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The intrinsic probabilistic nature of quantum systems makes error correction or mitigation indis-
pensable for quantum computation. While current error-correcting strategies focus on correcting
errors in quantum states or quantum gates, these fine-grained error-correction methods can incur
significant overhead for quantum algorithms of increasing complexity. We present a first step in
achieving error correction at the level of quantum algorithms by combining a unified perspective
on modern quantum algorithms via quantum signal processing (QSP). An error model of under- or
over-rotation of the signal processing operator parameterized by ε < 1 is introduced. It is shown
that while Pauli Z-errors are not recoverable without additional resources, Pauli X and Y errors
can be arbitrarily suppressed by coherently appending a noisy ‘recovery QSP.’ Furthermore, it is

found that a recovery QSP of length O(2kck
2

d) is sufficient to correct any length-d QSP with c
unique phases to kth-order in error ε. Allowing an additional assumption, a lower bound of Ω(cd) is
shown, which is tight for k = 1, on the length of the recovery sequence. Our algorithmic-level error
correction method is applied to Grover’s fixed-point search algorithm as a demonstration.

Error correction and noise mitigation strategies are
crucial for quantum computation. Two important and
distinct strategies have been suppression of systematic
errors using composite pulses [1–3] and correction of ran-
dom errors using classical and quantum codes [4–6]. Both
of them are fine-grained approaches that aim to make
more perfect gates from imperfect ones. Remarkably,
modern classical computers almost completely eschew
such fine-grained error correction and, in their place, em-
ploy more efficient strategies which correct or control er-
rors at the level of software and algorithms [7].

Envisioning similar algorithmic-level error correction
for quantum computation is challenging; simply repeat-
until-success strategies (e.g. error mitigation through
detection and post-selection) would incur exponential
overhead [8, 9]. Given recent progress providing a
unifying perspective on modern quantum algorithms
through quantum signal processing (QSP) [10, 11], its
generalization—quantum singular value transformation
(QSVT) [12, 13], and sophisticated new understandings
of error propagation in Lie product formulas [14], might
there be a new strategy combining these insights to en-
able error correction at the level of quantum algorithms?
The defining feature of such algorithm-level error cor-
rection (ALEC) techniques is the design of subroutines
that allow gate-level errors to cancel; therefore requir-
ing a sophisticated understanding of how gate-level er-
rors propagate to the output of algorithms. Such error
propagation is typically accomplished via analysis of non-
commutative algebra [14].

Here, we demonstrate a first example of ALEC un-
der the simple noise model of a consistent multiplicative

FIG. 1. Many important quantum algorithms can be refor-
mulated as transformation on some “signal,” which can be
implemented by a QSP sequence consisting of queries to a
signal operator W and rotations parameterized by phase an-
gles {φ}’s to manipulate the signal. Imperfections in these
rotations result in errors in the quantum algorithms. We
recover the correct outputs of the algorithms by appending
recovery sequences Rε. The phase angles {α}’s of the recov-
ery sequences depend only on the angles {φ}’s of the bare
sequences.

under- or over-rotation in the QSP operators by a fixed
but unknown noise parameter ε. Given such a noisy QSP
sequence, we construct a “recovery sequence”—a comple-
mentary QSP sequence subjected to the same noise and
to be appended to the original sequence—that corrects
the error up to the kth order in ε, for an arbitrary k ≥ 1.
Importantly, our method fits squarely within the stan-
dard QSP model and does not require any additional
resources (e.g. additional signal processing axes). Our
construction is akin to composite pulses in that the quan-
tum ALEC works despite being blind to ε, but the fact
that the recovery sequence must additionally work for all
values of the unknown input “signal” rotation marks a
departure from the composite pulse setting and makes
recovery substantially more challenging. In addition, our
construction is fully coherent and deterministic, which
differs from known error mitigation techniques [15–18].
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The rest of the paper is organized as follows. After
reviewing the QSP framework for quantum algorithms,
we introduce the error model and explore the feasibil-
ity of error correction using only noisy QSP operators.
We present our main results, including Theorem 1 on
the impossibility of the most general form of recovery.
This no-go theorem motivates a restricted form of re-
covery which we show is possible in Theorem 2. Our
constructive proof allows us to place upper-bounds on
the resource requirements for recovery which we present
in Theorem 3. Next, allowing an additional assumption,
we prove the optimality of our construction Theorem 4.
These results on QSP can be immediately lifted to QSVT.
As an example, we demonstrate an application of our al-
gorithmic error correction strategy to the Grover’s search
algorithm. Finally, we conclude the paper with a discus-
sion on implications of our results.

Framework & Main results.— We consider a computa-
tion where the input θ is encoded in a signal operator

W (θ) ≡ eiθX =

(
cos θ i sin θ
i sin θ cos θ

)
(1)

and the quantum algorithm is a length-d QSP sequence
of the form

U(θ) = QSP(θ; ~φ) ≡ eiφ0Z
d∏

j=1

W (θ)eiφjZ , (2)

where X,Z are the Pauli matrices and ~φ = (φ0, . . . , φd) ∈
Rd+1 are the QSP phase angles. The rotations around the
Z axis “process” the signal, i.e. they transform entries
of U into functions of cos θ. In particular, given a poly-
nomial P (cos θ) of degree at most d in cos θ satisfying
certain conditions, Remez-type algorithms [19] guaran-

tee the existence of a set of phase angles ~φ such that the
entry 〈0|U |0〉 is exactly P (cos θ). Therefore, designing
quantum algorithms, i.e. computing a desired function
f(cos θ), reduces to finding a good polynomial approxi-
mation P (cos θ) ≈ f(cos θ).

Generally, increasing the length d of the QSP sequence
enables better approximation. However, due to accu-
mulating experimental errors, the longer the QSP se-
quence, the further the computation deviates from the
ideal P (cos θ). We make the first step towards correct-
ing these errors on the algorithmic level by constructively
proving the existence of ALEC for a simple error model.

In this error model, we assume that the signal process-
ing operators under- or over-rotate by a fixed multiplica-
tive factor ε: φ 7→ φ(1 + ε) for all φ (Fig. 1). While ε is
unknown a priori, we assume that it is constant through-
out the application of the sequence and that it is small
ε� 1 so that we may expand errors in orders of ε. Such
an error may be due to imperfections on the hardware
control or non-optimality of classical computation of the
QSVT processing phases. A natural question to ask is

how one should define recovery and if it is possible, given
access only to such noisy signal processing rotations.

Impossibility of general recovery.— In the most gen-
eral form, one may ask given a noisy QSP Uε(θ) =

QSP(θ; ~φ), if there exists another noisy QSP sequence

U ′ε(θ) = QSP(θ; ~φ′), characterized by phase angles ~φ′ that

depend on ~φ, such that

〈0|U ′ε |0〉 = 〈0|U0 |0〉+O
(
εk+1

)
(3)

reproduces the target polynomial P (cos θ) = 〈0|U0 |0〉
up to the kth-order in ε, where U0 ≡ Uε=0. If this con-
struction were possible, it would allow us to build a less
noisy Z rotation, i.e. one that simply suppresses the
over- or under-rotations in the phase angles. Using these
rotations in place of the original, our recovered sequence
would only be a constant factor longer than the original.

Unfortunately, our first result is the impossibility of
such a construction:

Theorem 1 (No correction of Z-error). Let Uε
be a length-d noisy QSP unitary parameterized by
(φ0, . . . , φd) ∈ Rd+1. For general phases φi, no noisy
QSP unitary U ′ε exists such that for any k ≥ 1,

〈0|U ′ε |0〉 = 〈0|U0 |0〉+O(εk+1). (4)

The result comes precisely from the fact that we are
unable to build less noisy Z rotations from more noisy
Z rotations in the noisy QSP framework. Consequently,
it is only possible to contruct U ′ε such that 〈0|U ′ε|0〉 ap-
proximates 〈0|U0|0〉 up to a phase that may depend on
θ. We leave the detailed proof of Theorem 1 to the Sup-
plemental Material (SM) [20].

XY -recovery.— In light of this impossibility result, we
search for a weaker, but nonetheless useful, definition of
recovery. The primary challenge with the general form
of recovery is the recovery of the Z error, which corre-
spond to a global phase in the processed signal. In many
applications where the QSP ancilla qubit is measured in
the Z basis, only the measurement outcome probabil-
ity |〈0|U ′ε|0〉| 2 ≈ |P (cos θ)| 2 is important and, thus, the
global phase due to the Z error becomes irrelevant.

Our second result is a theorem establishing the exis-
tence of such a sequence U ′ε:

Theorem 2 (Recoverability). Given any noisy QSP op-
erator Uε(θ) and an integer k ≥ 1, there exists a recovery
sequence Rε(θ) satisfying

|〈0|UεRε|0〉|2 = |〈0|U0|0〉| 2 +O(εk+1) (5)

for all θ.

To construct the first-order recovery operator, con-
sider a length-d noisy QSP operator Uε parameterized
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by (φ0, . . . , φd) which we can write as

Uε = U0[I + iε(x(θ) sin θX + y(θ) sin θY

+ z(θ) cos θZ) +O(ε2)],
(6)

for polynomials x, y, z ∈ C[cos θ]. Note that x
and y, which we call the error polynomials, are
odd with degree at most (2s − 1), s ≤ d. We

can find a length-(2s) QSP V
(s)
ε parameterized by

(−α(s)
d , . . . ,−α(s)

0 , π/2, α
(s)
0 , . . . , α

(s)
d ) with error polyno-

mials xs and ys of degree-(2s−1) such that x(θ)+βsxs(θ)
and y(θ) + βsys(θ) are polynomials of degree-(2s− 3) for
βs ∈ R. We can choose δs ∈ R such that by counter-

rotating, Uεe
iδs(1+ε)ZV

(s)
ε e−2iδs(1+ε)ZV (s)

ε eiδs(1+ε)Z has
error polynomials x + βsxs and y + βsys. The entire
first-order recovery operator is constructed in this way,
each time reducing the degree of the error polynomials
by two. The construction of higher-order recovery opera-
tors proceeds analogously and is done order-by order. A
detailed discussion of the higher-order recovery operators
can be found in the SM [20].

Performance.—To quantify the feasibility of error cor-
recting a QSP sequence, we analyze the length of the
recovery sequence in our construction. From the con-
struction above, we see that to correct the degree-(2s)
term, we need to append a length Θ(s) recovery opera-
tor. Since s ≤ d, we require a O(d2) operator for first-
order recovery. For QSPs with phase degeneracies (i.e.
phases differing by an integer multiple of 2π), and there-
fore fewer real degrees of freedom, we can further econ-
omize by combining counter-rotation steps. In this way,
the first-order recovery requires only O(cd) phases for a
length-d QSP with c unique phases. Analogous savings
can be found at higher-order resulting in the following
result:

Theorem 3 (Upper bound on recovery length). Given
any noisy QSP operator Uε(θ) of length d with c dis-
tinct phases (up to factors of 2π) and an integer k ≥ 1,
there exists a recovery sequence Rε(θ) satisfying Theo-

rem 2 with length at most O(2kck
2

d).

We plot the exact length of the recovery sequence as a
function of d in Fig. 2a. We note that, while the length
increases exponentially with k, the desired correction or-
der k is usually a fixed constant. In particular, to correct
the first-order error in ε (k = 1), the length of the re-
covery sequence simply scales in the worse case (c ∝ d)
quadratically with the length of the bare sequence d.

The benefit of degenerate phases.— Interestingly, the
length of the recovery operator in Theorem 3 is domi-
nated by ck

2

for large k which is dependent on the number
of unique phases c. This suggests the number of unique
phases may be a more useful measure of complexity than
length in some cases. Indeed, in QSP constructions to
quantum algorithms, it is not uncommon for the number

of unique phases to scale sub-linearly with d, as multi-
ple signal processing phases may be identical [13, 21, 22];
Grover’s search algorithm is a notable example with one
unique phase and is discussed further below.

Optimality. — Next, we prove a complementary the-
orem on a lower bound for the length of a recovery se-
quence to first-order in ε.

Theorem 4 (Lower bound on recovery length). There
exists a length-d QSP sequence Uε such that for any XY
recovery sequence Rε of order k ≥ 1 satisfying

U†0UεRε = I + εf(a)ei
π
2 Z +O(ε2), (7)

for function f(a) = O(a0), Rε has length Ω(d2).

The assumption on the first-order Z component f(a) =
O(a0) in Theorem 4 is required for a technical reason and

effectively forces a unique choice of η
(s)
i in our first-order

recovery operator, and can also be seen as a desire to
limit the complexity of the recovery sequence. We con-
jecture that this assumption can be removed. Comparing
Theorem 4 to Theorem 3 reveals that our construction is
optimal for k = 1. However, there is currently a gap be-
tween the lower bound and the construction for recovery
beyond the first order (k > 1), leaving room for future
improvements.

Closing these gaps between the upper and lower
bounds has an important implication for quantum com-
putation, given that even the O(d2) scaling in our con-
struction for first-order error correction would negate all
quantum advantage (quadratic speedup) in most fixed-
point quantum unstructured search [23].

Application to Grover’s Search as an example.—We
apply ALEC to a representative quantum algorithm, a
modified version Grover’s fixed-point search algorithm
[23, 24] with a single unique phase, to demonstrate its
utility. By construction, the Grover fixed-point search
algorithm amplifies a given amplitude a by substituting
the reflection operator with ±π/3 rotations about the
selected state, thus avoiding the soufflé problem of the
non-fixed point Grover algorithm [25]; while the origi-
nal sequence is defined recursively, we study a modified
length-3 version with one unique phase. Fig. 3 shows the
deviation of the noisy success probability |Pε(a)|2 from
the noiseless |P0(a)|2 as a function of the squared input
overlap a = cos2 θ for varying levels of error correction
at fixed ε. It can be seen that the error is systematically
reduced as ALEC is applied to correct higher and higher
order errors, though for the plotted ε = 0.001, the error
for the k = 3 sequence exceeds that of the k = 2 sequence
for some values of a due to the presence of large constant
factors. Nevertheless, for small enough ε, the error is sup-
pressed, demonstrating the success of our ALEC theory.
Explicit phases for the first-order recovery operator can
be found in SM [20].

Error threshold.— Similar to standard quantum error
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FIG. 2. a) The exact length of our recovery sequence for orig-
inal QSP sequences of different length d (scatter points) and
c = d unique phases; solid lines show asymptotic scaling with
d. Upper bound with respect to d and k given by Theorem 3.
b) The ratio between the error after and before applying the
recovery sequence to a randomly generated QSP sequence as a
function of ε for different k (scatter points). The dashed hor-
izontal line means no error reduction. We also plot functions
proportional to ε, ε2, and ε3 for reference.

correction, there is an error threshold beyond which the
recovery sequence would instead add more error to the
original QSP sequence. In Fig. 2b, we plot the error
after applying the recovery sequences to a randomly gen-
erated QSP sequences as a function of ε. At k = 1, for
example, the recovery sequence becomes ineffective when
ε increases beyond ε∗1 = 0.05. However, unlike standard
quantum error correction, we can increase the threshold
ε∗k and, thus, increase the error tolerance of the QSP se-
quence by increasing the order k in our construction. An
interesting open question is whether the error threshold
ε∗k can be made arbitrarily large, i.e. limk→∞ ε∗k → ∞.
A positive answer to the question would provide a strong
motivation for quantum devices based on the QSP archi-
tecture.

Generalization to QSVT.— The constructed recovery
sequence in QSP can be immediately applied to the
case of QSVT to simultaneously correct errors in all sin-
gular value subspaces due to qubitization [11]. More
concretely, for a block-encoded operator A of dimen-
sion M ×M , each singular value is associated with an
SU(2) space which is transformed independently by the
same polynomial transformation controlled by the QSVT
phases. Since our construction of the recovery sequence

does not depend on the signal operator (the value of θ in
previous discussion, and in the QSVT case the signal be-
ing transformed is the singular value), the same recovery
sequence works for all M singular values in each SU(2)
subspace. By virtue of the unification of major quantum
algorithms provided by QSVT[13], this quantum ALEC
construction can correct these kinds of errors arising in
quantum search, simulation, and factoring algorithms.

Conclusions and Outlook.— While it is already tech-
nically challenging to construct recovery sequences given
the simple deterministic error model that we consider,
it is absolutely crucial in the future to analyze the re-
covery sequence in the presence of an extensive source
of random errors. These random errors typically intro-
duce entropy into the quantum circuit and often arise in
various quantum algorithms and physical devices.

Moreover, when our quantum algorithmic-level error-
correction strategy is generalized to QSVT, two addi-
tional sources of errors should be considered: i) the
projector-controlled-NOT operations, and ii) the block-
encoded signal unitaries. While error i) may come from
our inherent ignorance on the location of the subsystem
of interest, resulting in erroneous projector. Error ii) can
arise from approximations made in block-encoding the
operator of interest. In general, these errors may be cor-
related to each other, and whether they are correctable
depends on the specifics of the error models. Whether the
recovery sequences exist in general and, if so, how their
lengths scale with d play an important role in harnessing
quantum advantage from QSVT algorithms.

In addition, to investigate more complicated er-
ror sources, we anticipate further development of the
diagrammatic perturbative expansion[20] used in the
present work as a formal tool to analyze error propaga-
tion in QSP. We hope such diagrammatic geometry can
serve as a complimentary picture that eases future devel-

FIG. 3. Deviation of success probability from ideal QSP func-
tion of a modified Grover’s fixed-point search algorithm as a
function of initial success probability demonstrated for the
length-3 QSP parameterized by {π/3, π/3, π/3, π/3}. Vari-
ous orders of error correction are shown at ε = 0.001. Note
that for some values of a, the k = 3 error exceeds the k = 2
error at this value of ε due to the presence of large constant
factors.
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opment of new algorithmic-level error correction strate-
gies.

Finally, we note that quantum ALEC is complemen-
tary to the standard state-level quantum error correct-
ing (QEC) codes. While QEC codes protect quantum
states by encoding information into an extended Hilbert
space, ALEC protects information by introducing redun-
dancies in time. Whereas standard QEC moves entropy
into ancillary Hilbert spaces, one can view our construc-
tion as moving errors into the Z component. This also
proves a limitation of our method as the Z-error can be
important for situations when the QSP sequence need
to be coherently concatenated with another quantum
circuit [26]. A combination of ALEC with standard
QEC codes would provide a unified framework for fault-
tolerant quantum computation with a tunable trade-off
between space (number of qubits) and time (gate depth).

∗ aktan@mit.edu
† yuanliu@mit.edu
‡ minhtran@mit.edu

[1] K. R. Brown, A. W. Harrow, and I. L. Chuang, Phys.
Rev. A 70, 052318 (2004).

[2] G. H. Low, T. J. Yoder, and I. L. Chuang, Phys. Rev. A
89, 022341 (2014).

[3] M. H. Levitt, Progress in Nuclear Magnetic Resonance
Spectroscopy 18, 61 (1986).

[4] J. Preskill, Proceedings of the Royal Society of London.
Series A: Mathematical, Physical and Engineering Sci-
ences 454, 385 (1998).

[5] E. Knill and R. Laflamme, Phys. Rev. A 55, 900 (1997).
[6] V. V. Albert, K. Noh, K. Duivenvoorden, D. J. Young,

R. T. Brierley, P. Reinhold, C. Vuillot, L. Li, C. Shen,
S. M. Girvin, B. M. Terhal, and L. Jiang, Phys. Rev. A
97, 032346 (2018).

[7] I. Koren and C. M. Krishna, Fault-tolerant systems (Mor-
gan Kaufmann, 2020).

[8] S. Wang, P. Czarnik, A. Arrasmith, M. Cerezo, L. Cincio,
and P. J. Coles, arXiv:2109.01051.

[9] Y. Quek, D. S. França, S. Khatri, J. J. Meyer, and J. Eis-
ert, arXiv:2210.11505.

[10] G. H. Low, T. J. Yoder, and I. L. Chuang, Phys. Rev. X
6, 041067 (2016).

[11] G. H. Low and I. L. Chuang, Quantum 3, 163 (2019).
[12] A. Gilyén, Y. Su, G. H. Low, and N. Wiebe, in Pro-

ceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing , STOC 2019 (Association for
Computing Machinery, New York, NY, USA, 2019) pp.
193–204.

[13] J. M. Martyn, Z. M. Rossi, A. K. Tan, and I. L. Chuang,
PRX Quantum 2, 040203 (2021).

[14] A. M. Childs, Y. Su, M. C. Tran, N. Wiebe, and S. Zhu,
Phys. Rev. X 11, 011020 (2021).

[15] K. Temme, S. Bravyi, and J. M. Gambetta, Phys. Rev.
Lett. 119, 180509 (2017).

[16] W. J. Huggins, S. McArdle, T. E. O’Brien, J. Lee, N. C.
Rubin, S. Boixo, K. B. Whaley, R. Babbush, and J. R.
McClean, Phys. Rev. X 11, 041036 (2021).

[17] A. He, B. Nachman, W. A. de Jong, and C. W. Bauer,
Phys. Rev. A 102, 012426 (2020).

[18] E. van den Berg, Z. K. Minev, A. Kandala, and
K. Temme, arXiv:2201.09866.

[19] W. Fraser, J. ACM 12, 295 (1965).
[20] In the Supplemental Material, we provide mathematical

details on the proofs of the theorems. We also develop a
diagramatic notation for perturbative QSP analysis that
may be of independent interest.

[21] T. J. Yoder, G. H. Low, and I. L. Chuang, Phys. Rev.
Lett. 113, 210501 (2014).

[22] L. K. Grover, Phys. Rev. Lett. 80, 4329 (1998).
[23] T. J. Yoder, G. H. Low, and I. L. Chuang, Phys. Rev.

Lett. 113, 210501 (2014).
[24] L. K. Grover, Phys. Rev. Lett. 95, 150501 (2005).
[25] L. K. Grover, Phys. Rev. Lett. 79, 325 (1997).
[26] J. M. Martyn, Y. Liu, Z. E. Chin, and I. L. Chuang, J.

Chem. Phys. 158, 024106 (2023).

mailto:aktan@mit.edu
mailto:yuanliu@mit.edu
mailto:minhtran@mit.edu
https://doi.org/10.1103/PhysRevA.70.052318
https://doi.org/10.1103/PhysRevA.70.052318
https://doi.org/10.1103/PhysRevA.89.022341
https://doi.org/10.1103/PhysRevA.89.022341
https://doi.org/10.1016/0079-6565(86)80005-X
https://doi.org/10.1016/0079-6565(86)80005-X
https://doi.org/10.1098/rspa.1998.0167
https://doi.org/10.1098/rspa.1998.0167
https://doi.org/10.1098/rspa.1998.0167
https://doi.org/10.1103/PhysRevA.55.900
https://doi.org/10.1103/PhysRevA.97.032346
https://doi.org/10.1103/PhysRevA.97.032346
https://www.elsevier.com/books/fault-tolerant-systems/koren/978-0-12-818105-8
https://arxiv.org/abs/2109.01051
https://arxiv.org/abs/2210.11505
https://doi.org/10.1103/PhysRevX.6.041067
https://doi.org/10.1103/PhysRevX.6.041067
https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.1145/3313276.3316366
https://doi.org/10.1145/3313276.3316366
https://doi.org/10.1145/3313276.3316366
https://doi.org/10.1103/PRXQuantum.2.040203
https://doi.org/10.1103/PhysRevX.11.011020
https://doi.org/10.1103/PhysRevLett.119.180509
https://doi.org/10.1103/PhysRevLett.119.180509
https://doi.org/10.1103/PhysRevX.11.041036
https://doi.org/10.1103/PhysRevA.102.012426
https://arxiv.org/abs/2201.09866
https://doi.org/10.1145/321281.321282
https://doi.org/10.1103/PhysRevLett.113.210501
https://doi.org/10.1103/PhysRevLett.113.210501
https://doi.org/10.1103/PhysRevLett.80.4329
https://doi.org/10.1103/PhysRevLett.113.210501
https://doi.org/10.1103/PhysRevLett.113.210501
https://doi.org/10.1103/PhysRevLett.95.150501
https://doi.org/10.1103/PhysRevLett.79.325
https://doi.org/10.1063/5.0124385
https://doi.org/10.1063/5.0124385


Supplemental Material for “Error Correction of Quantum Algorithms: Arbitrarily
Accurate Recovery Of Noisy Quantum Signal Processing”

Andrew K. Tan,1 Yuan Liu,1 Minh C. Tran,2 and Isaac L. Chuang1, 3

1Department of Physics, Co-Design Center for Quantum Advantage,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

2Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
3Department of Electrical Engineering and Computer Science,

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Contents

S1. Diagrammatic notation for analyzing QSP errors 2
A. Background and definitions 2
B. Diagrammatic notation and manipulations 4

1. Basic properties 4
2. The conjugation super-operator 5
3. The elision operation 6

S2. Analysis of degree-0 operators 8
A. Analysis of error operators 8
B. Analysis of recovery operators 10

S3. Proof of Theorem 1: Z-error is not correctable in general 12

S4. Proof of Theorems 2 and 3: Higher-order Component-wise Recovery 13
A. First-order recovery 13
B. Standard form 14
C. First-order recovery revisited 16
D. General higher-order recovery 17

S5. Alternate Proof of Theorem 2: Degree-wise Recovery 20
A. First-order 20
B. Higher-order 22

S6. Proof of Theorem 4: Lower Bound 25

References 27



2

S1. Diagrammatic notation for analyzing QSP errors

In this Appendix, we provide a brief review of the QSP conventions and notations used in this paper. Additionally,
we introduce a general diagrammatic notation which is useful for visualizing the perturbative analysis of our error
model and more broadly for visualizing QSP operators.

A. Background and definitions

Definition S1.1. A length-d QSP operator is parameterized by phases ϕ⃗ = (ϕ0, . . . , ϕd) ∈ Rd+1,

U(θ; ϕ⃗) = QSP(θ; ϕ⃗) ≡ eiϕ0Z
d∏

j=1

W (θ)eiϕjZ , (S1)

where

W (θ) ≡ eiθX =

(
cos θ i sin θ
i sin θ cos θ

)
(S2)

and X, Y , and Z are the Pauli matrices. A general length-d QSP sequence takes the form

U(θ) =

(
P (a) iQ(a)

√
1− a2

iQ∗(a)
√
1− a2 P ∗(a)

)
, (S3)

where a ≡ cos θ and P,Q are polynomials of degrees at most d [S1]. We write U = JPU , QU K as a shorthand for
Eq. (S3), dropping the subscripts when the QSP unitary is clear by context.

We consider an error model where the signal processing Z rotation consistently under- or over-rotates by taking
phases ϕ 7→ ϕ(1+ ϵ). While ϵ is unknown a priori, we assume that is constant throughout the application of the QSP
sequence and that it is small ϵ≪ 1, allowing us to perform our error analysis perturbatively in orders of ϵ. It is with
this knowledge that we making the following definitions:

Definition S1.2 (Canonical expansion). We say that an operator Uϵ(θ) admits a canonical expansion if we can write
Uϵ = wϵ(θ)I + i[xϵ(θ)X + yϵ(θ)Y + zϵ(θ)Z], for functions wϵ, xϵ, yϵ, zϵ of the form

wϵ(θ) = cos2 θ

∞∑

k=0

ϵk
∞∑

j=−1

P(0,k)
j cos2j(θ), (S4)

xϵ(θ) = sin(2θ)

∞∑

k=0

ϵk
∞∑

j=0

P(x,k)
j cos2j(θ), (S5)

yϵ(θ) = sin(2θ)

∞∑

k=0

ϵk
∞∑

j=0

P(y,k)
j cos2j(θ), (S6)

zϵ(θ) = cos2 θ
∞∑

k=0

ϵk
∞∑

j=−1

P(z,k)
j cos2j(θ), (S7)

and P(σ,k)
j ∈ R for all σ ∈ {0, x, y, z} and j, k ∈ Z. We call P the canonical profile of Uϵ. For convenience, we allow

j ∈ Z and define P(x,k)
j = P(y,k)

j = P(z,k)
j−1 = 0 for all j < 0 and k.

Our parameterization, particularly the choice of factoring out sin(2θ) from the X and Y components, cos2 θ from
the Z component, and starting the sum of the Z component at j = −1, is tailored to the error operators which
we study in Section S2. Note that for unitary Uϵ, the functions satisfy the following completeness relationship
wϵ(θ)

2 + xϵ(θ)
2 + yϵ(θ)

2 + zϵ(θ)
2 = 1 which holds for all θ and ϵ.

The following Lemma demonstrates a class of operators, namely linear combinations of noiseless even-length QSP
unitaries, that admit canonical expansions.
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Lemma S1 (QSP operators of even length exhibit canonical expansion). Let U0(θ) = QSP(θ; ϕ⃗) be a noiseless QSP

unitary of length-2d, then U0(θ) admits a canonical expansion at zeroth order in ϵ. Additionally, P(σ,k)
j = 0 for all

k > 0 and for k = 0 with σ ∈ {0, x, y, z}, and j ≥ d.

Proof. A QSP unitary of even length 2d can be written in the form Eq. (S3) with polynomials P,Q ∈ C[a] where P
has degree at most 2d and is of even parity in cos θ; and Q has degree at most 2d−1 and is of odd parity [S1]. Writing
the polynomials as

P (cos θ) =

d∑

j=0

p2j cos
2j(θ), (S8)

Q(cos θ) =
d−1∑

j=0

q2j+1 cos
2j+1(θ), (S9)

we have

w0(θ) = Re[P (cos θ)] = cos2 θ
d−1∑

j=−1

Re[p2j ] cos
2j(θ), (S10)

x0(θ) = sin θRe[Q(cos θ)] = sin(2θ)
d−1∑

j=0

1

2
Re[q2j+1] cos

2j(θ), (S11)

y0(θ) = − sin θ Im[Q(cos θ)] = − sin(2θ)
d−1∑

j=0

1

2
Im[q2j+1] cos

2j(θ), (S12)

z0(θ) = Im[P (cos θ)] = cos2 θ
d−1∑

j=−1

Im[p2j ] cos
2j(θ). (S13)

This is of the stated form.

Since the transformation from an operator to its canonical profile is linear, we have the following corollary:

Corollary S2 (Linear combinations of QSP operators of even length exhibit canonical expansion). If an operator A
can be decomposed into

A =
∑

i

αiUi, (S14)

for αi ∈ R and QSP unitaries Ui of even length (i.e. A can be written as a linear combination of QSP unitaries of
even length), then it admits a canonical expansion.

Remark S1.3 (Vector representation of canonical expansion). It will often be convenient to represent a canonical

profile P in vector form. Assuming P(k)
j = 0 for all j ≥ d, we can write the entire canonical profile as a vector in

R4(d+1),

P⃗(k) ≡




P⃗(k)
d−1
...

P⃗(k)
0

P⃗(k)
−1



, (S15)

where the vector P⃗(k)
j ≡ (P(0,k),P(x,k)

j ,P(y,k)
j ,P(z,k)

j ).

Remark S1.4 (Canonical expansion of Z-rotation). Let Uϵ be an operator admitting canonical expansion with vector
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FIG. S1. The visualization of a) a length-5 QSP sequence parameterized by (ϕ0, · · · , ϕ5) and b) its length-3 elided form by the
result of Lemma S4. We will refer to such plots in general as QSP degree plots.

form P⃗(k) at order k ≥ 0 (Remark S1.3). Then Vϵ = eiχ0ZUϵe
iχ1Z for χ0, χ1 ∈ R has canonical profile at order k

P⃗(k)′ = Oz(χ0, χ1)P⃗(k) ≡




Oz(χ0, χ1)
Oz(χ0, χ1)

Oz(χ0, χ1)
. . .

Oz(χ0, χ1)







P⃗(k)
d−1
...

P⃗(k)
0

P⃗(k)
−1



, (S16)

where

Oz(χ0, χ1) ≡



cos(χ0 + χ1) 0 0 − sin(χ0 + χ1)

0 cos(χ0 − χ1) sin(χ0 − χ1) 0
0 − sin(χ0 − χ1) cos(χ0 − χ1) 0

sin(χ0 + χ1) 0 0 cos(χ0 + χ1)


 . (S17)

Definition S1.5 (Degree-0 operator). We call a QSP unitary Uϵ degree-0 to order k ≥ 1 if it can be written

Uϵ = ei(z0+z1ϵ+O(ϵ2))Z+iϵk[(x+O(ϵ))X+(y+O(ϵ))Y ], (S18)

for some real x, y, z1 independent of ϵ but possibly functions of θ, and z0 ∈ R. Additionally, we call any QSP operator
satisfying Eq. (S18) for some k ≥ 1 degree-0. Equivalently, a QSP operator Uϵ is degree-0 if U0 = eiz0Z for some
z0 ∈ R.

Definition S1.6 (Unbiased operator). We call a QSP unitary Uϵ unbiased to order k ≥ 1 if it is degree-0 and U0 = I.

Remark S1.7 (Equivalence of expansions of unbiased operators to leading-order). Two different expansions in
ϵ have been presented: the expansion in Definition S1.6 is performed in the exponent (i.e. the expansion is in the
Hermitian generator of the unitary operator), while the canonical expansion (Definition S1.2) is of the unitary operator
itself. These expansions do not yield the same expansion coefficients in general; however, for unbiased operators, the
coefficients are identical to the leading-order for k ≥ 1:

eiϵ(z+O(ϵ))Z+iϵk[(x+O(ϵ))X+(y+O(ϵ))Y ] = (1 +O(ϵ2))I + iϵ(z +O(ϵ))Z + iϵk[(x+O(ϵ))X + (y +O(ϵ))Y ]. (S19)

As all of our analysis will be done recursively on the leading order, we will use these forms interchangeably.

B. Diagrammatic notation and manipulations

In this Appendix, we introduce a diagrammatic notation that will be useful for visualizing and analyzing QSP error
operators. To this end, we prove a number of lemmas that imply useful diagrammatic manipulations.

1. Basic properties

Lemma S3. Let U0 = JP,QK be a length-d QSP unitary and k = deg(P ) ≤ d. The unitary U ′
0 = U0e

iϕ0ZWeiϕ1Z =
JP ′, Q′K is a length-(d+ 1) QSP unitary with either deg(P ′) = k − 1 or deg(P ′) = k + 1.
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Proof. Computing the product, we find

P ′(a) = e−i(ϕ0+ϕ1)
(
aP (a)−

(
1− a2

)
Q(a)e2iϕ0

)
. (S20)

Since deg(P ) = k by assumption and deg(Q) = k − 1, it must be that deg(P ′) ≤ k + 1.

Next, we prove that deg(P ′) ≥ k − 1 by contradiction. Assume that deg(P ′) = w < k − 1. We can then
iterate our construction above choosing U ′′

0 = U ′
0e

−i(ϕ1−π
2 )ZWe−i(ϕ0−π

2 )Z and, by the above argument, we have
deg(P ′′) ≤ w + 1 < k. But we have chosen the additional phases such that U ′′

0 = U0I0 where I0 is a irreducible
unbiased QSP corresponding to (ϕ0, π/2,−ϕ0 + π/2). Therefore, deg(P ′′) = k. This is a contradiction and so it must
be that deg(P ′) ≥ k − 1.

Furthermore, we have that deg(P ′) ̸= k by parity constraints. Therefore, the Lemma follows.

2. The conjugation super-operator

Definition S1.8 (The conjugation super-operator). Given η ∈ R and m,n ∈ Z, we use Cm,n,η to denote the super-

operator that maps a length-d sequence QSP(θ; ϕ⃗) to

Cm,n,ηQSP(θ; ϕ⃗) ≡ e−i(η+π(2m+n+ 1
2 ))ZWeiπ(n+

1
2 )ZQSP(θ; ϕ⃗)WeiηZ , (S21)

which is a length-(d+ 2) QSP sequence with phase angles −(η + π(2m+ n+ 1
2 )), π(n+ 1

2 ) + ϕ0, ϕ1, . . . , ϕd, and η.

The conjugation Cm,n,η super-operator appears naturally in our analysis of the error operator and subsequent
construction of the recovery sequence.

We note several useful properties of the conjugation operation in the following remarks:

Remark S1.9 (Recurrence under conjugation, first-order). Given an unbiased operator Uϵ with functions w, x, y, z
in its canonical expansion, the corresponding functions of conjugated operator U ′

ϵ = Cm,n,ηUϵ are given by



w′

x′

y′

z′


 =




cos2(θ) 0 0 0
0 cos(2η) − cos(2θ) sin(2η) cos2(θ) sin(2η)
0 sin(2η) cos(2θ) cos(2η) − cos2(θ) cos(2η)
0 0 4 sin2(θ) cos(2θ)






w
x
y
z


 . (S22)

From Eq. (S22), we can write the recurrence of the canonical profiles using the vector notation of Remark S1.3.

Suppose there exists some d ≥ 0 such that the canonical profile of Uϵ satisfies P(σ,1)
j = 0 for all j ≥ d, then recurrence

of the canonical profile of U ′
ϵ satisfies




P⃗ ′(1)
d

P⃗ ′(1)
d−1
...

P⃗ ′(1)
0

P⃗ ′(1)−1




=




A(η)
B(η) A(η)

B(η) A(η)
. . .

B(η) A(η)
B(η)







P⃗(1)
d−1
...

P⃗(1)
0

P⃗(1)
−1




(S23)

where the matrix on the right-hand side is a block bidiagonal matrix of size 4(d+ 2)× 4(d+ 1) with blocks

A(η) ≡



0 0 0 0
0 0 −2 sin 2η sin 2η
0 0 2 cos 2η cos 2η
0 0 −4 2


 , B(η) ≡



1 0 0 0
0 cos 2η sin 2η 0
0 sin 2η − cos 2η 0
0 0 4 −1


 . (S24)

Remark S1.10 (Linearity of conjugation). Note that conjugation is linear. For operators U , V and coefficients
α, β ∈ R,

Cm,n,η(αU + βV ) = αCm,n,ηU + βCm,n,ηV. (S25)
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3. The elision operation

Remark S1.11 (QSP sub-sequence notation). For QSP U of length-d parameterized by ϕ⃗ ≡ (ϕ0, . . . , ϕd), we will use

notation ϕ⃗i:j to denote the sub-sequence (ϕi, . . . , ϕj), and U
(j) to denote the length-j QSP parameterized by ϕ⃗0:j .

Definition S1.12 (QSP degree peak). Let R be an unbiased QSP sequence of length d ≥ 2 parameterized by
(ϕ0, . . . , ϕd) ∈ Rd+1. Suppose for some 0 < i < d we have deg (PR(i)) = r + 1 and deg (PR(i−1)) = deg (PR(i+1)) = r.
We will call position i a degree peak of R.

Lemma S4 (QSP elision). Let R be a QSP operator of length d ≥ 2 parameterized by (ϕ0, . . . , ϕd). Position i is a
degree peak of R if and only if ϕi = π

(
n+ 1

2

)
for some n ∈ Z.

Additionally, R is equivalent to a length-(d− 2) QSP parameterized by phases

(ϕ0, . . . , ϕi−2, ϕi−1 + ϕi + ϕi+1, ϕi+2, . . . , ϕd). (S26)

We refer to this transformation as QSP elision.

Proof. Writing out the product, we find the following relationship between QSP polynomials of R(i−1) and R(i):

PR(i) = aei(ϕi−1+ϕi)(PR(i−1) + e−2iϕi−1QR(i−1)) + Θ(ar−1). (S27)

By assumption deg(PR(i)) = r + 1 and therefore deg(PR(i−1) + e−2iϕi−1QR(i−1)) = deg(PR(i))− 1 = r.
Writing out the product for R(i+1), we find

PR(i+1) = 2a2 cos(ϕi)e
i(ϕi−1+ϕi+1)(PR(i−1) + e−2iϕi−1QR(i−1)) + Θ(ar). (S28)

Looking at the equation above and comparing with the PR(i) we find that if deg(PR(i+1)) = r, it must be that
cos(ϕi) = 0 or equivalently ϕi = π

(
n+ 1

2

)
for some n ∈ Z. The converse is also true.

Assuming ϕi = π(n+ 1
2 ), we find,

PR(i+1) = ei(ϕi−1+ϕi+ϕi+1)PR(i−1) , (S29)

This transformation is equivalent to a Z-rotation by ϕi−1 + ϕi + ϕi+1 (a length-0 QSP). We can therefore elide the
original QSP sequence by replacing the three phases ϕi−1, ϕi, and ϕi+1 with a single phase ϕi−1 + ϕi + ϕi+1, thus
proving the Lemma.

We then have the following as a corollary:

Corollary S5 (Degree-0 length-2 QSPs). A length-2 sequence QSP(θ; (ϕ0, ϕ1, ϕ2)) is degree-0 if and only if

ϕ0 = χ+

(
ϕ+ π

(
2m+ n+

1

2

))
, (S30)

ϕ1 = π

(
n+

1

2

)
, (S31)

ϕ2 = ϕ, (S32)

for some ϕ, χ ∈ R and n,m ∈ Z.
Equivalently,

QSP(θ; (ϕ0, ϕ1, ϕ2)) = eiχZCm,n,ϕI. (S33)

The construction of inverse QSP operators can also be seen as a immediate consequence of Lemma S4.

Corollary S6 (Inverse QSPs). Let U be length-d QSP operator parameterized by phases (ϕ0, . . . , ϕd). The length-
d QSP U ′ parameterized by (−ϕd + π

2 ,−ϕd−1, . . . ,−ϕ1,−ϕ0 − π
2 ) is the inverse QSP sequence in the sense that

UU ′ = U ′U = I.

Remark S1.13 (Summary of diagrammatic notation). We can summarize the results of this section using a concise
diagrammatic notation. An example of such a plot is given in Fig. S1 and has several notable features:

• Arbitrary Z-rotations are represented by open circles, and we use open triangles to plot QSP phases that are a
half-integer multiple of π to distinguish degree-peaks.
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• Markers with solid fill are used to indicate additional rotations by π/2. Markers with checkerboard fill are used
to indicate ϵ-noisy rotations.

• Signal operators are represented by solid lines.

• The vertical axis is used to plot the degree of the polynomial PU(i) at position i;

• By Lemma S3, each layer of signal processing either increases or decreases the degree of the polynomial Pi(a) =

⟨0|U(θ, ϕ⃗0:i) |0⟩ by exactly one.

• Finally, Lemma S4 provides us with a way of simplifying QSP diagrams with degree-peaks through elision.
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FIG. S2. Diagrammatic representation of an error operator for a length-3 QSP parameterized by ϕi ∈ R. a) Error operator

Eϵ = U†
0Uϵ. Checkerboard fill indicates ϵ-noisy rotations (note the peak phase is only partially noisy). b) Analysis of one

term in the first-order perturbative expansion of the error operator corresponding to an over-rotation error of the ϕ1 phase and
elided form. The location of π

2
over-rotation errors is marked by filled markers. c) Expansion of the error operator showing all

diagrams to first-order with corresponding weights.

S2. Analysis of degree-0 operators

In this Appendix we analyze two notable types of degree-0 operator: firstly, the error operator of an arbitrary QSP
(Remark S2.2); and the noisy degree-0 QSP (Remark S2.8), which will become the basis of our recovery construction.
To this end, we make use the diagrammatic techniques developed in Section S1.

A. Analysis of error operators

Given a noisy QSP, we would like to isolate the error term. We accomplish this by pre-multiplying the noisy
QSP operator by its noiseless inverse. By definition, the error must be a degree-0 operator as it vanishes as ϵ → 0
(Definition S1.5).

Definition S2.1 (Error operator). Given a QSP operator U , we define its error operator Eϵ = U†
0Uϵ. The inverse

operator U†
0 can be parameterized as a QSP operation using Corollary S6. Note that the error operator is an unbiased

operator as E0 = I.

We now perform a perturbative analysis of the error operators of QSPs under our noise model.

Remark S2.2 (Perturbative expansion of the error operator). We can expand a noisy Z-rotation in orders of ϵ as
follows:

eiϕ(1+ϵ)Z = eiϕZ
∞∏

k=0

ϵkϕkei
πk
2 Z . (S34)

Substituting into Eq. (S1), we obtain

Uϵ(θ; ϕ⃗) =

(
eiϕ0Z

∞∏

k0=0

ϵk0ϕk0ei
π
2 k0Z

)
d∏

j=1


W (θ)


eiϕjZ

∞∏

kj=0

ϵkjϕkjei
π
2 kjZ




. (S35)
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Rewriting in orders of ϵ,

Uϵ(θ; ϕ⃗) = U0 + ϵ
(
ϕ0e

i(ϕ0+
π
2 )ZWeiϕ1ZW . . .WeiϕdZ

+ϕ1e
iϕ0ZWei(ϕ1+

π
2 )ZW . . .WeiϕdZ

+ . . .

+ϕde
iϕ0ZWeiϕ1ZW . . .Wei(ϕd+

π
2 )Z
)
+O(ϵ2).

(S36)

The first-order term is a sum of d+1 QSP unitaries, each a copy of the noiseless QSP with a π
2 over-rotation at location

j weighted by ϕj for each index j. Likewise, the kth-order term is a sum of (d+ 1)k QSP unitaries corresponding to
all possible ways to to insert k over-rotations by π

2 (including multiple over-rotations at the same index).

To obtain the error operator of Definition S2.1, we left-multiply by U†
0 which can be written as a noiseless QSP per

the construction of Corollary S6. Each of these sequences can be simplified using repeated application of Lemma S4.
To first-order, the result is

Eϵ = I + ϵ (ϕ0 ×QSP(θ; (−ϕd − π/2,−ϕd−1, . . . ,−ϕ2,−ϕ1, π, ϕ1, ϕ2, . . . , ϕd−1, ϕd))

+ϕ1 ×QSP(θ; (−ϕd − π/2,−ϕd−1, . . . ,−ϕ2, π, ϕ2, . . . , ϕd−1, ϕd))

+ . . .

+ϕd−1 ×QSP(θ; (−ϕd − π/2, π, ϕd))

+ϕd ×QSP(θ; (π/2))) +O(ϵ2).

(S37)

Note that the first-order expansion in Eq. (S37) consists of a weighted sum of even length QSP unitaries of a special
form, which we generalize in Definition S2.3. Analogous calculations show that, the higher-order terms in the expansion
are likewise weighted sums over QSP unitaries of even length. Therefore by Corollary S2, the error operator Eϵ admits
a canonical expansion.

An example in diagrammatic form is provided for a general length-3 QSP in Fig. S2.

We generalize the form of the first-order error found in Eq. (S37) with the following:

Definition S2.3 (Standard form, first-order). We say an operator A is in first-order standard form of degree-2d if it
is written as a weighted sum over QSP operators generated by conjugation of ei

π
2 Z

A = α0 ×QSP(θ; (−ϕd − π/2,−ϕd−1, . . . ,−ϕ2,−ϕ1, π, ϕ1, ϕ2, . . . , ϕd−1, ϕd))

+ α1 ×QSP(θ; (−ϕd − π/2,−ϕd−1, . . . ,−ϕ2, π, ϕ2, . . . , ϕd−1, ϕd))

+ . . .

+ αd−1 ×QSP(θ; (−ϕd − π/2, π, ϕd))

+ αd ×QSP(θ; (π/2)).

(S38)

where αi ∈ R and ϕi ∈ R.

Definition S2.4 (Error profile). Let Uϵ be a noisy operator, we will refer to the canonical profile of its error operator
as the error profile of Uϵ. Note that the analysis of Remark S2.2 shows that if Uϵ is a noisy QSP operator, it admits
an error profile of the form in Definition S1.2.

Remark S2.5 (Canonical profile of product of unbiased operators, leading-order). If Uϵ, Vϵ are both unbiased to order
k ≥ 1 with canonical profiles P and Q respectively, then Wϵ = UϵVϵ is also unbiased to order k with an canonical
profile R satisfying

R(σ,k)
j = P(σ,k)

j +Q(σ,k)
j , σ ∈ {x, y}, (S39)

R(σ,1)
j = P(σ,1)

j +Q(σ,1)
j , σ ∈ {0, z}, (S40)

(S41)

for all j.

Remark S2.6 (Error profile of degree-0 operators). A degree-0 QSP operator Rϵ with R0 = eiχZ for χ ∈ R has error
operator Eϵ = e−iχZRϵ. That is, a degree-0 QSP operator’s error profile is a rotated version of its own canonical
profile, which can be calculated using Remark S1.4.
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FIG. S3. Diagrammatic analysis of an irreducible degree-0 QSP parameterized by χ = 0, ηi ∈ R and m ∈ Z (compare with
Fig. S2). a) Diagrammatic representation of an irreducible degree-0 QSP Rϵ. A detailed analysis is performed for over-rotation
errors occurring at select locations (labels 1–3) corresponding to errors at degree-2 (dashed line). Checkerboard fill indicates
ϵ-noisy rotations. b) Analysis of diagrams resulting from over-rotation errors at locations labeled in previous sub-figure after
elision. The location of π

2
over-rotation errors is marked by filled markers. c) Expansion of the recovery operator showing all

diagrams to first-order with corresponding weights. Notice that weights are integer multiples of π/2.

B. Analysis of recovery operators

In this subsection we will study the basic components of our error recovery sequence. To this end, we study the
properties of degree-0 QSP operators, and in particular, the properties of their irreducible building blocks.

Definition S2.7. A degree-0 QSP unitary of length d is called irreducible if deg(P (i)) > 0 for all 0 < i < d; otherwise
an degree-0 QSP is called reducible.

Lemma S7 (Decomposition of irreducible degree-0 QSP unitary). An irreducible degree-0 QSP sequence R of length

d ≥ 2 parameterized by phases ϕ⃗ ∈ Rd+1 can be written as R = eiχZCm,n,ϕd
R′ for some χ ∈ R and m,n ∈ Z, and

unbiased QSP R′ of length-(d− 2).

Proof. If d = 2, then R = eiχZCm,n,ϕ2
I for some χ ∈ R and m,n ∈ Z by Corollary S5.

For d > 2, we proceed by repeated application of the QSP elision operation (Lemma S4), each time reducing the
length of R by 2. In particular, since the unbiased QSP R is irreducible, it has a degree peak at location 2 ≤ i ≤ d−2.
Performing elision about position i, we are left with the length-(d − 2) irreducible degree-0 QSP sequence. Notably,
neither phases ϕ0 nor ϕd are affected by performing elision at location 2 ≤ i ≤ d− 2. After (d/2− 1) elision steps, we

are left with a length-2 QSP parameterized by QSP(θ; (ϕ0,
∑d−1
i=1 ϕi, ϕd)), where by Lemma S4, we have that

d−1∑

i=1

ϕi = π

(
n+

1

2

)
, (S42)

for some n ∈ Z.
Therefore QSP(θ, ϕ⃗1:d−1) = eiπ(n+

1
2 )Z or equivalently e−iπ(n+

1
2 )ZQSP(θ, ϕ⃗1:d−1) = I. Thus we can rewrite the

original QSP in the desired form R = eiχZCm,n,ϕd
R′ for χ ∈ R and unbiased length-(d − 2) QSP R′ ≡ QSP(θ; (ϕ1 −

π(n+ 1
2 ), ϕ2, . . . , ϕd−1)) proving the Lemma.

Remark S2.8 (Expansion of a degree-0 QSP, first-order). As noted in Remark S2.6, an degree-0 operator is a rotated
version of its own error operator. Therefore Rϵ can be written a form similar to that of Definition S2.3. We aim to
show that for the case of degree-0 Rϵ, these weights are additionally integer multiples of π2 save for the degree-0 term.
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First, consider the case of irreducible degree-0 QSP R = QSP(θ; (ϕ0, . . . , ϕd)). Consider the contributions to the
first-order error from over-rotations at the first and last positions (i.e. assume for now errors do not affect positions
0 < i < d). By Lemma S7 we can write irreducible

R = eiχZCm,n,ϕd
R′ = eiϕ0ZWeiπ(n+

1
2 )R′WeiϕdZ , (S43)

for R′ unbiased χ ∈ R and m,n ∈ Z. Over-rotation at the first and last positions occur at degree-0 and therefore both
produce an degree-0 error term equivalent to ei(χ+

π
2 )Z and the overall weight of the degree-0 diagram is ϕ0 + ϕd =

χ− π
2 (4m+ 2n+ 1). The same analysis holds for the unbiased R′, however ϕi + ϕd−i must be an integer multiple of

π/2 for 0 < i < d by Lemma S4, and therefore the error diagram must have weight that is a integer multiple of π/2.
Furthermore, the weights are preserved by the linearity of error profile to first-order under conjugation (Remark S1.10)
and product (Remark S2.5). Thus, the same holds for higher degree error diagrams.

Now consider a general degree-0 QSP R decomposed into r constituent irreducible components,

R = eiχ1ZJ (1)eiχ2ZJ (2) . . . eiχrZJ (r), (S44)

where χ1, . . . , χr ∈ R, and each J (j) is an irreducible unbiased QSP. We can in general write an degree-0 QSP Rϵ up
to first-order in ϵ as follows:

Rϵ = eiχZ

[
I +

(∑

i

cie
iπ2 Z +

π

2

∑

i

diUi

)
+O(ϵ2)

]
, (S45)

for χ = χ1 + · · ·+ χr, ci ∈ R, di ∈ Z and QSP unitaries Ui of even length. Additionally, each Ui is of the form

Ui = Cmi,d,ni,d,ηi,d . . . Cmi,1,ni,1,ηi,1e
iπ2 . (S46)

A diagrammatic analysis is provided for an example length-8 irreducible degree-0 QSP in Fig. S3.



12

S3. Proof of Theorem 1: Z-error is not correctable in general

In this Appendix, we prove the impossibility of the most general form of error correction (Theorem 1), thereby
motivating our restricted definition, which we dub ‘XY error correction’ (Theorem 3).

Remark S3.1 (Necessary condition for general QSP recovery). Let Uϵ be a noisy QSP unitary. The most general
form of error correction would be to seek another unitary U ′

ϵ, itself a noisy QSP operator, such that for some k ≥ 1,
for all states |ψ⟩,

|⟨ψ|U ′
ϵ|ψ⟩|

2
= |⟨ψ|U0|ψ⟩| 2 +O(ϵk+1). (S47)

This is equivalent to requiring

U ′
ϵ = U0e

iχeiϵ
k+1(xX+yY+zZ+O(ϵ)), (S48)

for some global phase χ ∈ R and x, y, and z functions of θ.
We will show that this is generally not possible in Theorem 1.

We continue with a few results needed in our proof of the impossibility result.

Lemma S8 (Bottom-degree term of degree-0 QSP). Let Uϵ be a degree-0 QSP with U0 = eiχZ for χ ∈ R (as required
by Remark S3.1). Then the bottom-degree Z term in its error profile P to first-order in ϵ is

P(z,1)
−1 = (χ+mπ) cosχ, (S49)

for some m ∈ Z.
Proof. The expansion of a general degree-0 QSP U to first-order is given by Eq. (S45). Remark S1.9 gives us the
lowest degree Z coefficients in the canonical expansion of each constituent diagram: the contribution to the lowest
degree Z term is given by the bottom-left component of a product of the B matrices of Eq. (S24), which for all degree
≥ 2 diagrams is 1 and for the degree-0 diagram ei

π
2 Z is −1. After a careful accounting of the weights, we find that

the sum from all diagrams to this lowest degree term is χ +mπ for m ∈ Z. Finally, the overall eiχZ rotation of the
first-order term in Eq. (S45) results in an overall multiplicative factor of cosχ on the expansion by Remark S1.4.

Together, this results in R(z,1)
−1 of the form required by the Lemma.

We are now ready to prove Theorem 1 which is restated below.

Theorem 1 (No correction of Z-error). Let Uϵ be a length-d noisy QSP unitary parameterized by (ϕ0, . . . , ϕd) ∈ Rd+1.
For general phases ϕi, no noisy QSP unitary U ′

ϵ exists such that for any k ≥ 1,

⟨0|U ′
ϵ |0⟩ = ⟨0|U0 |0⟩+O(ϵk+1). (S50)

Proof. First we show that we cannot fully recover a noisy length-0 QSP Uϵ ≡ eiϕ0(1+ϵ)Z to first-order for general
ϕ0 ∈ R. For full recovery, the QSP must satisfy Eq. (S48), and therefore either U ′

0 = eiϕ0Z or U ′
0 = ei(ϕ0+π)Z = −eiϕ0Z ;

therefore it U ′ must be a degree-0 QSP. We see immediately that its bottom-degree term, given by Lemma S8, cannot
be corrected in general (i.e. unless ϕ0 is an integer multiple of π/2).

Now we generalize the result for QSPs of length d > 0. For contradiction, suppose that there exists an error
correction function EC : Rd+1 → Rd′+1 for some d′ > d that is capable of mapping an arbitrary length-d QSP sequence

to one that is corrected to first-order. That is, suppose for any ϕ⃗ ∈ Rd+1 parameterizing QSP Uϵ = QSPϵ(θ, ϕ⃗) we

have ψ⃗ = EC(ϕ⃗) and U ′
ϵ = QSPϵ(θ, ψ⃗) satisfying Eq. (S48). We can simulate a length-0 QSP operator QSP(θ, (ϕ0))

by appending a recovered length-d QSP and a recovered version of its inverse (Corollary S6). For concreteness, we

can choose phases ϕ⃗1, ϕ⃗2 ∈ Rd+1,

ϕ⃗1 = (−π/2, 0, . . . , 0, π/2), (S51)

ϕ⃗2 = (0, . . . , 0, ϕ0). (S52)

Let Rϵ = QSPϵ(θ, ϕ⃗1) and Sϵ = QSPϵ(θ, ϕ⃗2). Further let ψ⃗1 = EC(ϕ⃗1), ψ⃗2 = EC(ϕ⃗2), and R′
ϵ = QSPϵ(θ, ψ⃗1) and

S′
ϵ = QSPϵ(θ, ψ⃗2). Note that by construction R0S0 = eiϕ0Z as desired and therefore R′

0S
′
0 = eiϕ0Z . Further, if both

R′
ϵ and S

′
ϵ satisfy Eq. (S48) for k ≥ 1, then resulting length-2d′ QSP R′

ϵS
′
ϵ will also be fully corrected to order k. This

contradicts our original result for d = 0 and therefore EC cannot exist for any d ≥ 0 thus proving the Theorem.
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FIG. S4. Diagrammatic representations of diagrammatic equivalence relations for a) exact equivalence for over-rotation by π ;
b) XY -equivalence of conjugation by π/2; and c) XY -equivalence of counter-rotated diagrams.

S4. Proof of Theorems 2 and 3: Higher-order Component-wise Recovery

In this Appendix, we generalize the first-order component-wise recovery construction of Section S4A to all orders
in k.

A. First-order recovery

In light of the impossibility result presented in Section S3, we shift our attention to XY error recovery. In this
Appendix, we show that it is possible to perform this restricted form of recovery and make use of the tools developed
in Section S2 to provide a general construction for XY recovery operators.

Remark S4.1 (Necessary condition for XY recovery). Let Uϵ be a noisy QSP unitary. Our restricted error correction
(i.e. XY recovery) condition is to seek another unitary U ′

ϵ, itself a noisy QSP operator, such that for some k ≥ 1,

|⟨0|U ′
ϵ|0⟩|

2
= |⟨0|U0|0⟩| 2 +O(ϵk+1) (S53)

This is equivalent to requiring

U ′
ϵ = U0e

i(χ+O(ϵ))Z+ϵk+1((x+O(ϵ))X+(y+O(ϵ))Y ) (S54)

for some χ ∈ R, and x, y, and z functions of θ.

We make the following definition in light of Remark S4.1:

Definition S4.2 (XY -equivalence). We say that two operators U = w(θ)I + i[x(θ)X + y(θ)Y + z(θ)Z] and V =
w′(θ)I + i[x′(θ)X + y′(θ)Y + z′(θ)Z] are XY -equivalent if x(θ) = x′(θ) and y(θ) = y′(θ). We denote this U ∼ V .

Remark S4.3 (Counter-rotation identity). Here we make use of the following trigonometric identity

(
sin(η + δ)

− cos(η + δ)

)
+

(
sin(η − δ)

− cos(η − δ)

)
= 2 cos(δ)

(
sin(η)

− cos(η).

)
(S55)

Thus by duplicating the length-2r sequence in Eq. (S58) and counter-rotating each copy by an amount δ/2, we can
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construct a sequence that is XY -equivalent to a re-scaled version of the original. this can be verified by Remark S1.4.
This is represented diagrammatically in Fig. S4 c).

Remark S4.4 (Constructing first-order recovery sequences). Conjugation allows us to extend first-order unbiased
operators. Given an unbiased QSP sequence R, the conjugation R′ = Cm,n,ηR is an irreducible unbiased sequence for
all η ∈ R and n,m ∈ Z.

In particular, we will use the following length-2d sequence for recovery to first-order:

Cmd,n,ηd . . . Cm1,n,η1I, (S56)

where m1, . . . ,md, n ∈ Z, and η1, . . . , ηd ∈ R.

For our construction, we further restrict ourselves to an appended recovery sequence. Namely, given noisy QSP
operator Uϵ, we seek a noisy recovery operation Rϵ such that U ′

ϵ ≡ UϵRϵ satisfies Eq. (S54). Additionally, we require
unbiased (i.e. R0 = I). We perform recovery component-wise.

Remark S4.5 (First-order component-wise recovery). There is a striking similarity between the error operator
expansion in Remark S2.2 and the general degree-0 in Remark S2.8 which are visualized in Fig. S2 and Fig. S3
respectively. We take advantage of this fact to construct our recovery operator.

Consider a noisy QSP Uϵ = QSP(θ; (ϕ0, . . . , ϕd)). As noted in Remark S2.2, its error operator Eϵ to first-order can
be decomposed into a sum of even-length QSPs from length 0, 2, . . . , 2d. The length-2r diagram is in general is

ϕd−r ×QSP(θ; (−ϕd − π/2, . . . ,−ϕd−r+1, π, ϕd−r+1, . . . , ϕd)). (S57)

The length-2r recovery operator of the form in Remark S4.4 to first-order

C0,n,ϕd+π/2C0,n,ϕd−1
. . . C0,n,ϕd−r+1

I = I + ϵ
(
−nπ

2
×QSP(θ; (π/2))

+
nπ

2
×QSP(θ; (−ϕd − π/2, . . . ,−ϕd−r+1, π, ϕd−r+1, . . . , ϕd))

)

+O(ϵ2),

(S58)

for some n ∈ Z to be specified later.
Note the similarities between the degree-2r terms in Eq. (S57) and Eq. (S58). The recovery QSP is parameterized

by the last r phases of the original QSP sequence. An additional π/2 shift added to the final phase ϕd 7→ ϕd + π to
negate the X and Y components of the degree-2r term at first-order: this can be confirmed by applying Remark S1.4.

The only remaining challenge is to match the ϕd−r weight of the degree-2r term in Eq. (S57). Here, we make use
of Remark S4.3 to continuously control the X and Y components of the recovery operator’s error profile. To fully
cancel the length-2r diagram in Eq. (S57), we append two length-2r recovery QSPs

C0,n,ϕd+π/2±δC0,n,ϕd−1
. . . C0,n,ϕd−r+1

I, (S59)

choosing n ∈ Z such that there is a solution to δ = 1
2 cos

−1
(
ϕd−r

nπ

)
.

In summary we have canceled the degree-2r diagram using a length-4r QSP operator. We repeat this for each
diagram of length-2r in the first-order expansion of the error operator for r ∈ {2, 4, . . . , 2d}; the length-0 term
contributes only to the Z component of the error, which can be ignored. Overall, the recovery of each diagram takes
a length Θ(r) QSP and we need to correct Θ(d) diagrams, resulting in a final recovery operator of length Θ(d2).

B. Standard form

First, we motivate and introduce new nomenclature useful in the analysis of the error and recovery operators to
higher-order in ϵ.

Definition S4.6 (Error component). Let U be length-d QSP operator parameterized by real phases (ϕ0, . . . , ϕd).
Then a length-2r QSP V with 1 ≤ r ≤ d is said to be an error component of QSP U if it can be written in the
following form:

V = QSP(θ; (−ϕd − π/2, . . . ,−ϕd−r+1, π, ϕd−r+1 + bd−r+1π/2, . . . , ϕd + bdπ/2)), (S60)
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FIG. S5. Diagrammatic representation of error terms for a representative length-3 QSP parameterized by ϕi ∈ R at a) order-1,
b) order-2, and c) order-3. To save space, we have omitted phase labels in the expansions. Diagrams are understood to be in
the form of Definition S4.6 with open circles denoting bi = 0 and filled circles denoting bi = 1.
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where bi ∈ {0, 1}. Furthermore, it is assumed that no ϕi for i < d is a half-integer multiple of π; otherwise, we can
perform elision to simplify the diagram.

Remark S4.7 (π-rotation identity). Let V be a length-d QSP operator parameterized by real phases (ϕ0, . . . , ϕd).
Then the length-d QSP V ′ = QSP(θ; (ϕ0, . . . , ϕi + π, . . . , ϕd)) with single phase over-rotated by π is simply related
via negation,

V = −V ′. (S61)

This can be clearly seen as a Z-rotation by π is equivalent to negative identity (i.e eiπZ = −I), and is shown
diagrammatically in Fig. S4 a) for QSP V in the form of Definition S4.6.

Remark S4.8 (π/2-rotation identity). Let V ′ be a length-2r QSP operator parameterized

V ′ = QSP(θ; (−ϕd − π/2, . . . ,−ϕi + π/2, . . . ,−ϕd−r+1, π, ϕd−r+1 + bd−r+1π/2, . . . , ϕi, . . . , ϕd + bdπ/2)), (S62)

with ϕi ∈ R and bi ∈ {0, 1} (i.e. nearly in the form Definition S4.6 save for the π/2-over-rotation of the −ϕi phase).
Using Remark S1.4 and Remark S1.9, we find that

V ′ ∼ −V (S63)

for V in the form Definition S4.6

V = QSP(θ; (−ϕd − π/2, . . . ,−ϕi, . . . ,−ϕd−r+1, π, ϕd−r+1 + bd−r+1π/2, . . . , ϕi + π/2, . . . , ϕd + bdπ/2)). (S64)

This is shown diagrammatically for an example QSP in Fig. S4 b).

Remark S4.9 (Standard form, higher-order). To simplify the analysis of error and recovery operators at any order,
we generalize Definition S2.3 by writing the contribution at each order as an XY -equivalent linear combination of
diagrams of the form Definition S4.6. Note that the first-order analysis presented in Remark S4.4 is already in this
form. For all higher-orders, this can be accomplished using repeated application of Remark S4.7 and Remark S4.8,
keeping track of factors of −1.

Diagrams to order k = 3 are shown for a generic length-3 QSP in Fig. S5.

C. First-order recovery revisited

In this subsection, we revisit the construction for first-order recovery of Remark S4.5. In doing so, we improve the
scaling from Θ(d2) to Θ(cd), where c is the number of distinct phases (up to factors of 2π).

Remark S4.10 (First-order component-wise recovery, revisited). We once again consider length-2r recovery operators
similar to those in Eq. (S58), but we make use of an additional integral degree of freedom, namely the freedom to
over-rotate by factors of 2π (note that we can also choose to over-rotate to the left of the degree-peak as shown in
Fig. S6),

V = QSP(θ; (−ϕd − π/2,−ϕd−1, . . . ,−ϕd−r+1, π/2, ϕd−r+1 + 2πmd−r+1, . . . , ϕd + 2πmd)). (S65)

The length-2r recovery operator yields to first-order

V = I + ϵ
(
−nπ

2
×QSP(θ; (π/2))

+ 2πmd ×QSP(θ; (−ϕd − π/2, π, ϕd)))

+ 2πmd−1 ×QSP(θ; (−ϕd − π/2,−ϕd−1, π, ϕd−1, ϕd)))

...

+
nπ

2
×QSP(θ; (−ϕd − π/2, . . . ,−ϕd−r+1, π, ϕd−r+1, . . . , ϕd))

)

+O(ϵ2).

(S66)

for some n ∈ Z and mi ∈ Z to be specified later. Note that previously in Eq. (S58), we had effectively set mi = 0.
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We find the first-order expansion of the recovery operator in Eq. (S66) is now a sum of r + 1 diagrams of degree
0 through 2r in increments of 2. This is depicted in Fig. S6, and is again nearly identical to the general first-order
error term of Fig. S5. The main limitation in the construction of the recovery operator is the real-valued rescaling
required to match the generic error term. As in Remark S4.5, this is accomplished using the counter-rotation trick
which one can verify generates rescaled XY -equivalent diagrams (Fig. S4 c)).

For a generic length-d QSP with all phases distinct, we cannot do better using this method, as we still need to
perform counter-rotation d times. But for a length-d QSP operator with c distinct phases, we can group diagrams that
are scaled by the same amount together; each group can corrected using a single length-2r diagram by appropriately
choosing mi and n. Overall, if there are c distinct phases, there will be c distinct groups, each requiring a separated
counter-rotated diagram of length Θ(d). Note that we count phases as equivalent if they differ only by an integer
multiple of 2π as these can matched within the same group by an appropriate choice of mi and n. Thus the overall
complexity using this scheme yields the improved Θ(cd) for QSP diagrams with high phase degeneracy.

Remark S4.11 (Example for QSP with single unique phase.). Let Uϵ be a length-d QSP with a single unique phase
ϕ (e.g. Grover search). Using the result of Remark S4.10, we can construct a first-order recovery operator by choosing
phases

η⃗1 = (−ϕ− π − δ,−ϕ, . . . ,−ϕ, π/2, ϕ+ 2πm, . . . , ϕ+ 2πm, ϕ+ π/2 + δ), (S67)

η⃗2 = (−ϕ− 4nπ − δ,−ϕ, . . . ,−ϕ, 4nπ − π/2, ϕ+ 2πm, . . . , ϕ+ 2πm, ϕ+ π/2 + δ), (S68)

η⃗3 = (−ϕ− π + δ,−ϕ, . . . ,−ϕ, π/2, ϕ+ 2πm, . . . , ϕ+ 2πm, ϕ+ π/2− δ), (S69)

η⃗4 = (−ϕ− 4nπ + δ,−ϕ, . . . ,−ϕ, 4nπ − π/2, ϕ+ 2πm, . . . , ϕ+ 2πm, ϕ+ π/2− δ), (S70)

(S71)

with appropriate m,n ∈ Z and δ depending on ϕ. Note crucially that each . . . hides only Θ(d) phases.

Letting V
(1)
ϵ = QSP(θ; η⃗1), . . . , V

(4)
ϵ = QSP(θ; η⃗1), V

(1)
ϵ V

(2)
ϵ V

(3)
ϵ V

(4)
ϵ is a first-order recovery sequence for Uϵ.

D. General higher-order recovery

Remark S4.12 (Constructing higher-order recovery sequences). Let Rϵ and R̄ϵ be k
th-order unbiased sequences with

canonical profiles R and R̄ respectively with

R(σ,k)
j = −R̄(σ,k)

j (σ = x, y, z), (S72)

for all j, and

R(z,k)
j = R̄(z,k′)

j = 0, (S73)

for all j for k′ < k.
Then the operator Sϵ ≡ RϵR̄ϵ with canonical profile S is an order-(k + 1) unbiased sequence with

S(σ,k+1)
j = R(σ,k)

j + R̄(σ,k)
j (σ = x, y, z), (S74)

for all j.
We can make use of the above observation and Remark S4.4 to generate general higher-order recovery sequences.

For instance, to create a second-order recovery sequence, we may combine two first-order sequences. In general, this
requires careful choice of mi and n. Example recovery sequences up to order-3 are shown in Fig. S6.

Lemma S9 (Higher-order component-wise recovery). Let U
(k−1)
ϵ be a noisy QSP unitary XY recovered to order-

(k − 1),

U (k−1)
ϵ = U0e

i(χ+O(ϵ))Z+ϵk((x+O(ϵ))X+(y+O(ϵ))Y ). (S75)

If U
(k−1)
ϵ is of length-d and with c unique phases (up to factors of 2π). Then, a recovery sequence R(k) of length

Θ(2kckd) exists to recover up to order-k,

U (k−1)
ϵ R(k) = U0e

i(χ+O(ϵ))Z+ϵk((x+O(ϵ))X+(y+O(ϵ))Y ). (S76)
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FIG. S6. Diagrammatic analysis of expansions for representative recovery diagrams of a) order-1, b) order-2, and c) order-3.
As in Fig. S6, phase labels are omitted and diagrams are understood to be in the form of Definition S4.6 with open circles
denoting bi = 0 and filled circles denoting bi = 1.
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Proof. The result for higher-orders is similar to that in Remark S4.10 for first-order recovery. The units of recovery
at order-k can be constructed using Remark S4.12 and are of length Θ(2kd) (example recovery units are shown in
Fig. S6).

As in the first-order case, we can correct groups of diagrams scaled by the same real coefficient using each recovery
unit. In general, each recovery unit may need to be repeated a constant number of times with different values of mi

and n in order to attain the desired integral coefficients.
The main factor bounding recovery length is the number of distinct groups with different real coefficients. The real

coefficients at order-k consist of the k-tuples of the c distinct phases, of which there are
(
c
k

)
= Θ(ck). Note that again

we consider phases equivalent if they differ only by an integer multiple of 2π as these require only o(ck) additional
recovery units.

Thus the recovery to order-k can be accomplished using a recovery sequence of length Θ(2kckd).

We are now ready to prove Theorem 3, restated below, in full generality.

Theorem 3 (Upper bound on recovery length). Given any noisy QSP operator Uϵ(θ) of length d with c distinct
phases (up to factors of 2π) and an integer k ≥ 1, there exists a recovery sequence Rϵ(θ) satisfying

|⟨0|UϵRϵ|0⟩|2 = |⟨0|U0|0⟩| 2 +O(ϵk+1)

for all θ. Furthermore, there exists a QSP operator satisfying the above with length at most O(2kck
2

d).

Proof. Let Uϵ be a length-d QSP sequence with c unique phases with error operator Eϵ. We perform recovery order-
by-order so that we can make use of the additive property of diagrams to leading-order (Remark S2.5). At each
order, from Remark S4.1, it suffices to append a sequence of relatively negative XY -equivalent diagrams. Recovery

to first-order has been shown in Remark S4.10 with a sequence R
(1)
ϵ of length Θ(cd).

After appending the first-order recovery sequence, we have UϵR
(1)
ϵ , a length Θ(cd) QSP sequence. The key to

showing the desired scaling is to notice this sequence has large phase redundancy: namely, the length Θ(cd) QSP
sequence is parameterized by the same phases, except for an additional Θ(c) new distinct phases used in the counter-
rotation. Thus, by Lemma S9, recovery to second-order can be accomplished using a recovery sequence of length
Θ(22 × c2 × cd) = Θ(22c3d). Recovery to order-k can be accomplished using a recovery sequence a factor Θ(ck)

longer than the previous order. Overall this construction requires a length O(2kck
2

d) sequence, thus proving the
Theorem.

We have Theorem 2, restated below, as a corollary.

Theorem 2 (Recoverability). Given any noisy QSP operator Uϵ(θ) of length d and an integer k ≥ 1, there exists a
recovery sequence Rϵ(θ) satisfying

|⟨0|UϵRϵ|0⟩|2 = |⟨0|U0|0⟩| 2 +O(ϵk+1) (S77)

for all θ.

In Section S5, we provide an alternate proof to Theorem 2.
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S5. Alternate Proof of Theorem 2: Degree-wise Recovery

In this Appendix, we present an alternate construction for recovery. Though this construction is exponentially

less efficient, generating a length Θ(2kd2
k

) sequence, we find that it is sufficiently different to be worth discussion.
Furthermore, we find that despite being asymptotically worse, it can produce shorter recovery sequences in practice
due to the large constants hidden in Lemma S9. Whereas the construction presented in performs recovery component-
wise, here we perform recovery degree-wise.

A. First-order

We now describe our construction of the recovery sequence that corrects the first-order error in a QSP sequence.
Given a faulty QSP sequence Uϵ, let Eϵ be its error operator and P its error profile, it suffices by Remark S4.1 to
construct a recovery sequence Rϵ with an error profile R satisfying

R(σ,1)
j = −P(σ,1)

j (S78)

for σ = x, y and for all j.

The construction of Rϵ is recursive. In the first iteration, we construct Rϵ that satisfies Eq. (S78) only at jmax, the

largest j such that P(σ,1)
j ̸= 0 (σ = x, y). At the end of this iteration, the appended QSP sequence has a modified

error profile P ′ such that P ′(σ,0)
j = 0 for all j ≥ jmax, resulting in a lower jmax for the next iteration. Repeating this

procedure until P(σ,0)
j = 0 for all j, we arrive at the desired recovery sequence.

The building block for our recovery sequence is the conjugations in Eq. (S56). The following Lemma gives the error
profile for QSP sequence that results from the conjugations.

Lemma S10 (Top-degree recovery term, first-order). Let R be the length-(2d) QSP sequence resulting from d con-
jugations in Eq. (S56) with m1 = · · · = md = 0 and n1 = · · · = nd = n. Let R be the error profile of Rϵ. We
have



R(x,1)
d−1

R(y,1)
d−1

R(z,1)
d−1


 = π22d−3(2n+ 1)

d−1∏

j=1

cos2(ηj)




sin(2ηd)
− cos(2ηd)

2


 . (S79)

Proof. We prove Lemma S10 by induction. For d = 1, the error profile of the corresponding length-2 QSP satisfies
Eq. (S79):



R(x,1)

0

R(y,1)
0

R(z,1)
0


 = π2−1(2n+ 1)




sin(2η1)
− cos(2η1)

2


 . (S80)

Suppose Lemma S10 holds for all length-2d sequences. We shall prove that it also holds for all length-(2d + 2)
sequences.

Let R′ be a length-(2d + 2) sequence satisfying the assumptions of Lemma S10 and R be a length-2d sequence
satisfying

R′ = C0,n,ηd+1
R. (S81)

Let R′ and R be the error profiles of R′
ϵ and Rϵ, respectively. Using Eq. (S22), we have

R′(x,0)
d = sin(2ηd+1)(R(z,0)

d−1 − 2R(y,0)
d−1 ), (S82)

R′(y,0)
d = − cos(2ηd+1)(R(z,0)

d−1 − 2R(y,0)
d−1 ), (S83)

R′(z,0)
d = 2(R(z,0)

d−1 − 2R(y,0)
d−1 ). (S84)
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Applying Lemma S10 on R, we have

R(z,0)
d−1 − 2R(y,0)

d−1 = π22d−3(2n+ 1)
d−1∏

j=1

cos2(ηj)(2 + 2 cos(2ηd)) (S85)

= π22d−1(2n+ 1)
d∏

j=1

cos2(ηj). (S86)

Therefore,



R′(x,1)
d

R′(y,1)
d

R′(z,1)
d


 = π22d−1(2n+ 1)

d∏

j=1

cos2(ηj)




sin(2ηd+1)
− cos(2ηd+1)

2


 (S87)

and Lemma S10 holds for R′. By induction, Lemma S10 holds for length-2d QSP sequences for all d ≥ 1.

Also, recall from Remark S1.9 that R
(x,1)
j = R

(y,1)
j = R

(z,1)
j = 0 for all j ≥ d.

Lemma S11 (First-order degree-wise recovery). Let U be a length-d QSP sequence, Eϵ be the error operator for U ,

and P its error profile. Let jmax be the largest j such that either P(x,1)
j ̸= 0 or P(y,1)

j ̸= 1. There exists an unbiased

recovery sequence R such that the error profile P ′ of UϵRϵ satisfies

P ′(x,1)
j = P ′(y,1)

j = 0 (S88)

for all j ≥ jmax. In addition, the length of the recovery sequence is at most 2(jmax + 1) if jmax ≥ 1 and at most 4 if
jmax = 0.

Proof. First, we consider jmax ≥ 1. Let n be the smallest integer such that

√
(P(x,1)

jmax
)2 + (P(y,1)

jmax
)2 ≤ π22jmax−1

(
n+

1

2

)
. (S89)

Let R be the length-(2jmax + 2) QSP sequence in Eq. (S56) with m1 = · · · = mjmax+1 = 0, n1 = · · · = njmax+1 = n
and R be the error profile of Rϵ. By Lemma S10, we have

(
R(x,1)
jmax

R(y,1)
jmax

)
= π22jmax−1

(
n+

1

2

) jmax∏

j=1

cos2(ηj)

(
sin(2ηjmax+1)

− cos(2ηjmax+1)

)
. (S90)

Next, we choose η1 = · · · = ηjmax−1 = 0,

ηjmax
= cos−1




√
(P(x,1)

jmax
)2 + (P(y,1)

jmax
)2

π22jmax−1
(
n+ 1

2

)




1/2

(S91)

ηjmax+1 = −1

2
tan−1

(
P(x,1)
jmax

P(y,1)
jmax

)
≤ 0. (S92)

Substituting these phase angles into Eq. (S90), we obtain

(
R(x,1)
jmax

R(y,1)
jmax

)
= −

(
P(x,1)
jmax

P(y,1)
jmax

)
. (S93)

Thus by Remark S2.5 we have the Lemma for jmax ≥ 1.

Finally, we consider the case jmax = 0. Recall that for jmax ≥ 1, we have a continuous control over the magnitude
of the error profile provided by ηjmax

. For jmax = 0, we use the counter-rotation trick of Remark S4.3. Accordingly,
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we choose η = − tan−1
(
P(x,1)
0 /P(y,1)

0

)
≤ 0 and

δη =
1

2
cos−1




√
(P(x,1)

0 )2 + (P(y,1)
0 )2

π
(
n+ 1

2

)


 (S94)

to arrive at Eq. (S93) for jmax = 0. This concludes the proof of the Lemma.

Repeatedly applying Lemma S11, we incrementally lower jmax. When P(x,0)
j = P(y,0)

j = 0 for all j ≥ 0, we arrive

at Theorem 2 for k = 1. Since the length of the recovery sequence in each iteration of Lemma S10 is 2(jmax + 1) and
jmax is initially at most d− 1, the total length of the recovery sequence is at most

4 +
d−1∑

jmax=1

2(jmax + 1) = d2 + d+ 2. (S95)

We arrive at the following corollary:

Corollary S12 (First-order recovery length). For a length-d QSP Uϵ, there exists recovery sequence Rϵ of length
d2 + d+ 2 satisfying Theorem 2 for k = 1, that is

|⟨0|UϵRϵ|0⟩|2 = |⟨0|U0|0⟩| 2 +O(ϵ2). (S96)

B. Higher-order

We now generalize to higher-orders. First, we provide an explicit recursive construction of higher order unbiased
sequences.

Lemma S13 (Top-degree recovery term, higher-order). For all k ≥ 1, there exists a kth-order unbiased QSP sequence
of length-(2kd) Rϵ, parameterized by η1, . . . , ηd ∈ [−π, π) and n ∈ Z with an error profile R satisfying

(
R(x,k)
d−1

R(y,k)
d−1

)
= πk22d−3(2n+ 1)

k
d−1∏

j=1

cos2(ηj)

(
0 1
−1 0

)k−1(
sin(2ηd)

− cos(2ηd)

)
(S97)

and R(x,k−1)
j = R(y,k−1)

j = 0 for all j ≥ d.

Proof. We will provide a recursive construction for a length-(2kd) QSP satisfying the Lemma.
Let Rϵ be the length-2d recovery sequence parameterized by n ∈ Z and η1, . . . , ηd as in Lemma S10 and R its error

profile. From the Lemma, we have

(
R(x,1)
d−1

R(y,1)
d−1

)
= π22d−3(2n+ 1)

d−1∏

j=1

cos2(ηj)

(
0 1
−1 0

)0(
sin(2ηd)

− cos(2ηd)

)
, (S98)

and R(x,0)
j = R(y,0)

j = 0 for all j ≥ d. So R satisfies the Lemma for k = 1.

Suppose the Lemma holds for k ≥ 1 and let Rϵ be the k
th-order unbiased QSP sequence satisfying the Lemma. We

define R̄ϵ to be the QSP sequence identical to Rϵ except that ηd 7→ ηd +
π
2 and n 7→ −(n+ 1). Let R and R̄ be their

respective error profiles. Using Remark S4.12, one can show that

R(σ,k)
j = R̄(σ,k)

j (σ = x, y), (S99)

R(z,k)
j = −R̄(z,k)

j , (S100)

for all j and k ≥ 1.
Thus we can construct a sequence S using Remark S4.12 that is unbiased to order k + 1 as follow:

Sϵ ≡ e−iπ(n+
1
2 )(1+ϵ)ZRϵe

iπ(n+ 1
2 )(1+ϵ)ZR̄ϵ, (S101)
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which is a length-(2k+1d) QSP unitary. By the result of Remark S4.12, the error profile S of Sϵ satisfies

(
S(x,k)
d−1

S(y,k)
d−1

)
= π(2n+ 1)

(
0 1
−1 0

)(R(y,k−1)
d−1

R(x,k−1)
d−1

)
= πk22d−3(2n+ 1)

k
d−1∏

j=1

cos2(ηj)

(
0 1
−1 0

)k−1(
sin(2ηd)

− cos(2ηd)

)
. (S102)

Therefore the Lemma holds for k + 1 and, by induction, it holds for all k.

Lemma S14 (Higher-order degree-wise recovery). Let U be a length-d QSP sequence, Eϵ be its error operator, and

P its error profile. Suppose Eϵ is unbiased to order-k, that is P(x,k′)
j = P(y,k′)

j = 0 for all j ≥ 0 and k′ < k. Let jmax

be the largest j such that either P(x,k)
j ̸= 0 or P(y,k)

j ̸= 0. There exists an unbiased recovery sequence R such that the

error profile P ′ of UϵRϵ satisfies

P ′(x,k)
j = P ′(y,k)

j = 0 (S103)

for all j ≥ jmax and k ≥ 0. In addition, the length of the recovery sequence is at most 2k+1(jmax + 1) if jmax ≥ 1 and
at most 2k+2 if jmax = 0.

Proof. The proof of the Lemma is nearly identical to that of Lemma S11.
First, consider k ≥ 1 and jmax ≥ 1. Let n be the smallest integer such that

√
(P(x,k)

jmax
)2 + (P(y,k)

jmax
)2 ≤ πk22jmax−1(2n+ 1)

k
. (S104)

Let R be the kth-order unbiased length-(2k+1(jmax + 1)) QSP sequence parameterized by η1, . . . , ηjmax+1 ∈ [−π, π)
and n ∈ Z, that satisfies Lemma S13 and R be its error profile. From Lemma S13, we have

(
R(x,k)
jmax

R(y,k)
jmax

)
= πk22jmax−1(2n+ 1)

k
jmax∏

j=1

cos2(ηj)

(
0 1
−1 0

)k−1(
sin(2ηjmax+1)

− cos(2ηjmax+1)

)
, (S105)

Next, we choose η1 = · · · = ηjmax−1 = 0, n from Eq. (S104), and

ηjmax
= cos−1




√
(P(x,k)

jmax
)2 + (P(y,k)

jmax
)2

πk22jmax−1(2n+ 1)
k




1/2

(S106)

ηjmax+1 = −1

2
tan−1

(
P(x,k)
jmax

P(y,k)
jmax

)
− 3πk

4
. (S107)

Substituting these phase angles into Eq. (S105), we obtain

(
R(x,k)
jmax

R(y,k)
jmax

)
= −

(
P(x,k)
jmax

P(y,k)
jmax

)
. (S108)

From Remark S2.5, we have Lemma S14 for jmax ≥ 1.
Finally, for the case jmax = 0 we again use the counter-rotation trick of Remark S4.3 setting η1 = η ± δη. We

choose η = − tan−1
(
P(x,0)
0 /P(y,0)

0

)
− 3πk

4 and

δη =
1

2
cos−1


2

√
(P(x,k)

0 )2 + (P(y,k)
0 )2

πk(2n+ 1)
k


 (S109)

to arrive at Eq. (S108) for jmax = 0. This concludes the proof of Lemma S14.

This provides an alternate proof for Theorem 2 which is restated below for convenience.
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Theorem 2 (Recoverability). Given any noisy QSP operator Uϵ(θ) of length d and an integer k ≥ 1, there exists a
recovery sequence Rϵ(θ) satisfying

|⟨0|UϵRϵ|0⟩|2 = |⟨0|U0|0⟩| 2 +O(ϵk+1) (S110)

for all θ.

Proof. To prove Theorem 2 in full generality for k ≥ 1, we repeatedly apply Lemma S14.

Let R
(k′)
ϵ be the recovery operator accumulated from such repeated applications for order-k′. We start by construct-

ing R
(1)
ϵ such that U†

0UϵR
(1)
ϵ is unbiased to order-2. We then increment k′, repeating the process up to k′ = k + 1 to

obtain a (k + 1)th-order unbiased operator U†
0UϵR

(1)
ϵ . . . R

(k)
ϵ .

We can therefore write

UϵR
(1)
ϵ . . . R(k)

ϵ ≡ U0e
iϵ(z+O(ϵ))Z+iϵk+1[(x+O(ϵ))X+(y+O(ϵ))Y ], (S111)

as required by Remark S4.1 thus providing an alternate proof of Theorem 2.

Corollary S15 (Higher-order recovery length). For a length-d QSP Uϵ, there exists a XY -recovered sequence U ′
ϵ of

length Θ(2kd2
k

) satisfying Remark S4.1 for all k ≥ 1.

Proof. The proof is by induction on k.

For k = 1, Corollary S12 gives the exact length of d2 + d+ 2 = Θ(21d2
1

) which agrees with Theorem 3.
We now show the inductive step assuming the Corollary holds at order k. Given a noisy QSP corrected to order k

of length-dk with dk = Θ(2kd2
k

), we can perform correction to the (k + 1)th-order using at most dk applications of
Lemma S13 for each 0 ≤ jmax ≤ dk − 1. From Lemma S14, each application adds length 2k(jmax + 1) for jmax > 0
and 2k+1 for jmax = 0. The overall length of the resulting sequence therefore has length dk satisfying

dk+1 = dk + 2k+2 +

dk∑

jmax=1

2k+1(jmax + 1) = Θ(2k+1d2
k+1

). (S112)

Thus Theorem 3 holds for all k ≥ 1.

The main reason for the exponentially worse performance as compared with the construction in Section S4 is the
fact that we do not make use of the phase redundancy in the recovered operators, and thus recovery at each order is
performed de novo.
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S6. Proof of Theorem 4: Lower Bound

In this Appendix, we show that the length of our recovery sequence for first-order recovery is asymptotically optimal.
While the assumption on the first-order Z component in Theorem 4 is required for technical reasons, the condition

can also be seen as a desire to limit the complexity of the recovery sequence. It is important to point out that the
condition for XY recovery (Remark S4.1) does not itself place any limits on f(a); and, in fact, neither the component-
wise nor the degree-wise recovery constructions we’ve presented satisfy this requirement, requiring f(a) = Ω(d).

First, we define the inverse of the conjugation operation of Remark S1.9.

Remark S6.1 (Recurrence under anti-conjugation, first-order). We can construct the inverse to the conjugation
operation using Corollary S6.

C−1
n,ηQSP(θ; ϕ⃗) ≡ eiπ(n+

1
2 )ZWeiηZQSP(θ; ϕ⃗)e−i(η+

π
2 )ZWei

π
2 Z , (S113)

Let Uϵ be a degree-d operator with canonical expansion P, the canonical expansion of C−1
n,ηUϵ is




P⃗ ′(1)
d

P⃗ ′(1)
d−1
...

P⃗ ′(1)
0

P⃗ ′(1)−1




=




A(η)
B(η) A(η)

B(η) A(η)
. . .

B(η) A(η)
B(η)







P⃗(1)
d−1
...

P⃗(1)
0

P⃗(1)
−1




(S114)

where the matrix on the right-hand side is a block bidiagonal matrix of size 4(d+ 2)× 4(d+ 1) with blocks

A(η) ≡



0 −4 sin 2η −4 cos 2η −2
0 −2 sin 2η 2 cos 2η 1
0 0 0 0
0 0 0 0


 , B(η) ≡



0 −4 sin 2η 4 cos 2η 1
0 sin 2η − cos 2η 0
0 − cos 2η − sin 2η 0
1 0 0 0


 . (S115)

Lemma S16 (Uniqueness of QSP parameterization). Let U = QSP(θ; ϕ⃗) be a length-d QSP and let V = QSP(θ; ψ⃗)
be a length-d′ QSP. Further assume such that no phase ϕi, ψj is a half-integer multiple of π. Then U = eiχV for
some global phase χ ∈ [0, 2π) if and only if d = d′ and for all 0 ≤ i ≤ d, ψi−ϕi = πni for some ni ∈ Z. Furthermore,
either χ = 0 or χ = π.

Proof. The ⇐= direction is a straightforward application of Remark S4.7 and so we focus on =⇒ .

Since by assumption, neither ϕ⃗ nor ψ⃗ contain a half-integer multiple of π, Lemma S4 implies that neither contain
any degree peaks and therefore deg(PU ) = d and deg(PV ) = d′. As a result, the QSP unitaries must be of the same
length U = V =⇒ PU = PV =⇒ deg(PU ) = deg(PV ) =⇒ d = d′. We can therefore limit our consideration to the
case of d = d′.

Now we show that the phases must be equivalent up to an integer multiple of π inductively. First consider the case
where d = 0. In this case, U = eiχV =⇒ eiϕ0Z = eiχeiψ0Z =⇒ ϕ0 = ψ0 + πn0 for some n0 ∈ Z; furthermore, χ = 0
for n0 even and χ = π for n0 odd. Thus the Lemma is satisfied for d = 0.

Assuming the Lemma for QSP unitaries of length-d, we show that it holds for QSP unitaries of length-(d + 1).

Consider QSPs U = QSP(θ; ϕ⃗) and V = QSP(θ; ψ⃗) each of length-(d + 1) satisfying the conditions of the Lemma.
Given that U = V , we reduce U to a length-d QSP by right-multiplying both sides by a QSP inverse (Corollary S6)
of its final signal processing step (Weiϕd+1Z)−1 = e−i(ϕd+1−π

2 )ZWe−i
π
2 Z . The result is

U = V, (S116)

=⇒ QSP(θ; ϕ⃗0:d+1) = QSP(θ; ψ⃗0:d+1), (S117)

=⇒ QSP(θ; ϕ⃗0:d+1)e
−i(ϕd+1−π

2 )ZWe−i
π
2 Z = QSP(θ; ψ⃗0:d+1)e

−i(ϕd+1−π
2 )ZWe−i

π
2 Z , (S118)

=⇒ QSP(θ; ϕ⃗0:d) = QSP(θ; {ψ0, . . . , ψd, ψd+1 − ϕd+1 + π/2,−π/2}). (S119)

On the left-hand side of the final equation is a QSP unitary of degree-d; by the inductive hypothesis, it must be the
case that the QSP unitary on the right-hand side, which is of length-(d+ 2), is also of degree-d. This is only possible
if we can perform elision at the next-to-last position. By Lemma S4 this requires ψd+1 − ϕd+1 +

π
2 = π(nd+1 +

1
2 )
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FIG. S7. Diagrammatic representation of one anti-conjugation by step in the proof of Theorem 4 for a length-d QSP. The
left-hand side depicts the first-order error terms and the right-hand side depicts a proposed set of recovery diagrams. Only the
highest two degree terms in each sequence are shown as lower-degree diagrams cannot interfere assuming sufficiently large d
and f(a) = O(1). The anti-conjugation by C−1

0,ϕd
decreases the degree all terms of the error operator by 2 (save for degree-0

term which does not affect the analysis); In order for the right-hand side to match, it must be that ηi,d = ϕd for all recovery
diagrams i.

for some nd+1 ∈ Z which implies ψd+1 − ϕd+1 = nd+1π. Furthermore, we find χ ∈ {0, π} using Remark S4.7. Thus
proving the inductive step ϕd+1 − ψd+1 = 2πmd+1 and by extension, the Lemma.

Remark S6.2 (First-order error components are anti-Hermitian). Let V be a first-order error component (i.e. of the
form Definition S4.6 with all bi = 0). First, note that is is unitary since it is a QSP operator. Then from Corollary S6,
we see that it is anti-Hermitian (i.e. V −1 = V † = −V ).

Remark S6.3 (Two error components cannot be combined, first-order). Let U and V be first-order error components
of degree-2r (i.e. of the form Definition S4.6 with all bi = 0), parameterized by ϕd−r+1, . . . , ϕd and ψd−r+1, . . . , ψd
respectively. Their weighted sum, αU + βV for α, β ∈ R can be written as scaled single error component if and only
if ψi − ϕi = niπ for ni ∈ Z for all d− r + 1 ≤ i ≤ d.

The ⇐= direction follows directly from application of Remark S4.7. For the =⇒ direction, consider that error
components are QSP operators and therefore must be unitary. Therefore, we must have for some c ∈ R,

(αU + βV )(αU + βV )† = (α2 + β2)I + αβ(UV † + V U†), (S120)

= (α2 + β2)I − αβ(UV + V U), (S121)

= cI, (S122)

where we have used Remark S6.2 in the second equality.

Since U and V are of form Definition S4.6, their canonical expansions P and P ′ have P(0,1)
j = P ′(0,1)

j = 0 for all

j by Remark S1.9. Thus, in order for the final equality in Eq. (S120) to hold, we must have UV = V U = ±I or
equivalently U† = −U = ±V . The result holds by application of Lemma S16.

We are now ready to prove Theorem 4 which for convenience is restated below.
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Theorem 4 (Lower bound on recovery length). There exists a length-d QSP sequence Uϵ such that for any XY
recovery QSP Rϵ of order k ≥ 1 satisfying

U†
0UϵRϵ = I + ϵf(a)ei

π
2 Z +O(ϵ2),

for function f(a) = O(a0), Rϵ has length Ω(d2).

Proof. Let Uϵ = QSP(θ; (ϕ0, . . . , ϕd)) be a noisy of length d > 1 QSP with error operator Eϵ and Rϵ any recovery
sequence satisfying Remark S4.1 for k ≥ 1.

From Remark S2.8, we see that each error component scaled by an independent real-value requires a separate
irreducible recovery sequence of length Θ(d). To prove the Theorem, we show that generically Ω(d) independently
scaled error components are required. We argue that to approximate the first-order error operator of Eq. (S37), we
need as sequence of degree 2d, 2(d − 1), 2(d − 2), . . . error components. In fact, given the restrictive condition of
f(a) = O(a0), the only approximation is one that identical to the error operator up to the π degrees of freedom
allowed by Lemma S16.

Assume that we’ve found an approximation to first-order for an error operator of degree-(2d). We proceed induc-
tively, for the first Θ(d) diagrams by anti-conjugating thereby reducing the error operator to one of degree-(2(d− 1)),
neglecting the lowest-degree terms. Consider the first-order error terms of both Eϵ and Rϵ written in the form Defini-
tion S2.3. Anti-conjugating the error C−1

0,ϕd
Eϵ, results in all contributing diagrams decreasing in order by two (save for

the degree-0 diagram) as the outermost phases of each diagram can be elided (Lemma S4). Therefore anti-conjugating
the recovery operator C−1

0,ϕd
Rϵ must likewise result in a two degree reduction. One step of the procedure is depicted

in Fig. S7. Since by assumption, the difference in the Z-component is f(a) = O(a0), it cannot interfere with the top
two degree diagrams for sufficiently large d; and the two highest-degree diagrams in R must have outermost phase
ϕd and be scaled by ϕ0 and ϕ1 respectively as in Eϵ. This can be seen by using Remark S6.1 and Remark S6.3. We
can iterate this procedure Θ(d) times, before f(a) = O(a0) becomes relevant, each time requiring outermost phase of
ϕd−r+1 with scaling by ϕr−1.

Thus the top Θ(d) degree diagrams in the recovery operator must be identical to that in the error operator. If all
ϕi distinct, Θ(d) independently scaled error components are required, each of length Θ(d). Thus showing the lower
bound of Ω(d2) for general length-d QSPs.

Our lower bound is independent of k and is therefore loose for k > 1 and presents a direction for future work.
An important limitation of our current construction is the recursive construction of higher-order recovery unites
(Remark S4.12) which requires a doubling in length for each order in k. It remains an open question whether a
order-k unbiased sequence can be constructed using sub-exponential resources.

QSPs with phase degeneracies are able to circumvent this lower bound as in Remark S4.10. This motivates the
exploration of families of polynomials that can be generated (or approximated) by QSPs with o(d) unique phases.

[S1] A. Gilyén, Y. Su, G. H. Low, and N. Wiebe, in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing , STOC 2019 (Association for Computing Machinery, New York, NY, USA, 2019) pp. 193–204.
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