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ABSTRACT
Finite temperature auxiliary field-based quantum Monte Carlo methods, including determinant quantum Monte Carlo and Auxiliary Field
Quantum Monte Carlo (AFQMC), have historically assumed pivotal roles in the investigation of the finite temperature phase diagrams
of a wide variety of multidimensional lattice models and materials. Despite their utility, however, these techniques are typically formu-
lated in the grand canonical ensemble, which makes them difficult to apply to condensates such as superfluids and difficult to benchmark
against alternative methods that are formulated in the canonical ensemble. Working in the grand canonical ensemble is furthermore accom-
panied by the increased overhead associated with having to determine the chemical potentials that produce desired fillings. Given this
backdrop, in this work, we present a new recursive approach for performing AFQMC simulations in the canonical ensemble that does
not require knowledge of chemical potentials. To derive this approach, we exploit the convenient fact that AFQMC solves the many-body
problem by decoupling many-body propagators into integrals over one-body problems to which non-interacting theories can be applied.
We benchmark the accuracy of our technique on illustrative Bose and Fermi–Hubbard models and demonstrate that it can converge
more quickly to the ground state than grand canonical AFQMC simulations. We believe that our novel use of HS-transformed operators
to implement algorithms originally derived for non-interacting systems will motivate the development of a variety of other methods and
anticipate that our technique will enable direct performance comparisons against other many-body approaches formulated in the canonical
ensemble.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0026606., s

I. INTRODUCTION

For decades, chemical physicists have focused on developing
a constellation of electronic structure methods, from mean field1,2

to perturbation1,2 to coupled cluster theories,2,3 to describe the
ground and low-lying excited states of molecules and solids. While
it is undoubtedly true that many phenomena involve electrons that
reside in their ground states, it is becoming increasingly apparent
that there are a wealth of phenomena for which this assumption
does not hold: atoms and molecules in the centers of large planets
and stars can experience GPa of pressure and temperatures of over
10 000 K,4,5 and lasers can be used to heat and thereby steer chemical
reactions along different mechanistic pathways to facilitate processes

such as catalysis.6–8 Temperature is moreover one of the key parame-
ters that can be used to tune the electronic properties of the materials
that make up many of modern society’s most important technolo-
gies9–11 and is responsible for the pernicious loss of coherence in
physical realizations of qubits.12

Reflecting this growing list of applications, a growing number
of methods have recently been developed to study them. One of
the most straightforward ways of determining the finite tempera-
ture properties of quantum systems is by diagonalizing the system’s
Hamiltonian to determine all of its many eigenvalues and weighting
them to compute its partition function and related observables in a
process termed exact diagonalization (ED).13 While this technique is
numerically exact, as its name implies, its computational cost scales
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exponentially with system size. On the other end of the spectrum,
finite temperature mean field theories, including finite temperature
Hartree–Fock14,15 and Density Functional (DFT) theories,16,17 trade
accuracy for computational expediency by approximating the many-
body problem as a one-body problem in which an electron is coupled
to an average or “mean” field of the other electrons. While such mean
field theories continue to improve and hold great promise, they still
struggle to achieve the accuracy often needed to correctly capture
many-body physics. Between these two poles lie a variety of tech-
niques that are generalizations of their ground state counterparts.
The past few years, for example, have seen a resurgence of interest
in finite temperature coupled cluster techniques18–22 and perturba-
tion theories.23–28 Closer to the mean field end of the spectrum,
finite temperature embedding theories that partition systems into
correlated regions embedded within uncorrelated baths29 such as
Dynamical Mean Field Theory (DMFT)30,31 and the finite tempera-
ture SEET and Second-order Green’s Function methods32–34 are dis-
tinctively capable of directly obtaining the full frequency-dependent
spectra of the systems they model. Nevertheless, all of these methods
struggle to balance computational cost with the need to account for
the numerous electronic states that contribute to finite temperature
expectation values.

Finite Temperature Quantum Monte Carlo (FT-QMC) meth-
ods are particularly advantageous in this regard because they have
the exceptional ability to access numerous states without the expo-
nential or high polynomial costs of other techniques by randomly
sampling multidimensional state spaces for the most important
states.35–38 One of the most successful of these techniques is
Determinant Quantum Monte Carlo (DQMC)39–41 and its more
recent extension, FT Auxiliary Field Quantum Monte Carlo (FT-
AFQMC).42–44 DQMC has a long history of being employed to study
a wide variety of lattice models. One of the key reasons why DQMC
has been so widely adopted is because, for certain important classes
of problems,39,45 it does not suffer from the infamous sign or phase
problems46 that limit the practical utility of many other stochastic
methods. AFQMC methods grew out of DQMC methods and were
developed with the aim of being able to accurately model systems
with clear sign problems by leveraging their more sophisticated sam-
pling techniques and phaseless approximation.38,47–49 These meth-
ods have since shed light on such sign- and phaseful systems as
the Hubbard model off of half-filling46,50,51 and many different
ab initio molecular44,52–54 and solid state systems.55–58 Furthermore,
these QMC techniques are versatile—they can be applied to vir-
tually any second-quantized Hamiltonian—and, by sampling the
overcomplete space of non-orthogonal determinants, they are able
to sample large portions of Fock space with a high accuracy yet
comparatively mild computational cost of O(N3)–O(N4), where N
denotes the number of basis functions.38

This said, one of the Janus-faced features of these methods is
that they are formulated in the grand canonical ensemble, in which
a system’s internal energy and particle number are allowed to fluc-
tuate according to its fixed temperature and chemical potential.59 In
many systems, it is more natural to fix intensive properties rather
than extensive quantities (imagine the inherent difficulty involved
with fixing the number of electrons in a solid), and auxiliary field-
based methods formulated in the grand canonical ensemble may
therefore be viewed as being better suited for modeling these sys-
tems. Nevertheless, it can be challenging to ascribe a meaningful

chemical potential to systems such as condensates, superfluids, and
superconductors that, by definition,60 can undergo large fluctua-
tions in their particle numbers.61 Indeed, for this very reason, past
attempts at using grand canonical FT-AFQMC to model bosons and
Bose–Fermi mixtures were largely unsuccessful.62 However, even for
the majority of systems for which the chemical potential is well-
defined, the process of determining the correct chemical potential to
achieve a desired filling or average particle number can be unwieldy.
In current auxiliary field techniques that work in the grand canon-
ical ensemble, practitioners must scan through tens to hundreds of
possible chemical potentials before recovering the desired one for
every Hamiltonian they study, which can accumulate into a sub-
stantial cost. Moreover, sampling in the grand canonical ensemble
is not equivalent to sampling in the canonical ensemble, partic-
ularly at the particle numbers far from the thermodynamic limit
used in many simulations. Sampling the grand canonical ensemble
involves sampling a much larger Fock space of states, many of which
minimally contribute to thermodynamic averages, than sampling
the canonical ensemble. This makes comparing results from grand
canonical ensemble approaches to results from canonical ensemble
approaches challenging and can also introduce additional statisti-
cal noise that can make arriving at meaningful statistical averages
more challenging than in the canonical ensemble. Because of the
differences between these ensembles, properties measured in these
ensembles may also converge to their limits in different manors,
meaning that one ensemble may converge certain properties more
rapidly than the other.

Given this context, in this work, we derive a new recursive
formulation for performing finite temperature AFQMC simula-
tions in the canonical ensemble. Unlike past canonical ensemble
formalisms that relied upon Fourier extracting canonical results
from grand canonical simulations and thus also depended upon a
costly tuning of chemical potentials,63–67 our technique does not
require knowledge of the chemical potential. To accomplish this,
our method exploits one of the key yet often overlooked features
of the AFQMC formalism: by decoupling two-body operators into
an integral over one-body operators, the Hubbard–Stratonovich
(HS) transformation38,68,69 used in AFQMC produces an ensemble
of non-interacting systems to which theories developed for non-
interacting systems can be applied. In particular, to derive our
approach, we apply a recursive formalism for obtaining the parti-
tion functions of ideal gases to the one-body operators in AFQMC
to ultimately yield a many-body recursive theory. In the following,
we derive this formalism for systems of bosons, spinless fermions,
and spinful fermions, and demonstrate its accuracy and practical
advantages for several benchmark Hubbard models. Interestingly,
we show that energies computed in the canonical ensemble converge
more quickly to the ground state than energies computed in the
grand canonical ensemble. Ultimately, we believe that this formal-
ism will be most useful for studying condensates as well as systems
of fermions approaching their ground states and will motivate the
integration of other useful non-interacting theories into the AFQMC
formalism.

We thus begin in Sec. II by deriving our formalism for
bosons and fermions and contrasting it with the conventional grand
canonical DQMC and AFQMC formalism. We then benchmark
the accuracy and highlight interesting features of our method in
Sec. III. Finally, in Sec. IV, we conclude with a discussion of the
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applications for which we expect our methodology to be of the
greatest future use.

II. METHODS
To contrast our canonical ensemble formalism with previous

formalism, we begin by outlining the conventional grand canonical
DQMC algorithm before describing our own formalism.

A. Review of determinant quantum Monte Carlo
(DQMC) in the grand canonical ensemble

The central quantity in any grand canonical ensemble for-
malism is the grand partition function, Z, because it is from this
quantity that all other thermodynamic quantities can be obtained.
In the grand canonical ensemble, the internal energy and particle
number are allowed to fluctuate around average values that can be
tuned by the temperature and chemical potential, respectively.59 The
grand partition function may thus be expressed as the trace over the
Boltzmann factor containing both the temperature and the chemical
potential.

In DQMC39,41 and AFQMC48,62 methods that work in the
grand canonical ensemble, the grand partition function may be re-
expressed into a form amenable to sampling by first discretizing it
into L imaginary time slices,

Z = Tr (e−β(Ĥ−μN̂)
) = Tr( lim

Δτ→0

L

∏

l
e−Δτ(Ĥ−μN̂)

). (1)

Here, Ĥ denotes the many-body Hamiltonian, μ denotes the chem-
ical potential, N̂ = ∑i,σ ĉ†iσ ĉiσ denotes the particle number operator,
and Δτ = β/L. In order to facilitate its subsequent evaluation, the
propagator, e−Δτ(Ĥ−μN̂), is factored into short imaginary time kinetic
and potential propagators via a Suzuki–Trotter factorization70,71

such that

Z ≈ Tr(
L

∏

l
[e−ΔτK̂/2e−ΔτV̂ e−ΔτK̂/2

]). (2)

As discussed in Sec. III A, in this work, we focus on models whose
Hamiltonians can be written as Ĥ = K̂ + V̂ , where K̂ denotes the col-
lection of all one-body operators, including the chemical potential
term, and V̂ denotes that of all two-body operators. The exact grand
partition function is recovered in the limit that Δτ → 0. This factor-
ization enables us to treat the one-body and two-body operators sep-
arately. While one-body propagators, e−ΔτK̂ , may be neatly expressed
as matrices in a given basis,40 two-body propagators, e−ΔτV̂ , may
not be as easily expressed. Fortunately, two-body propagators of the
form e−ΔτV̂ can be re-expressed in terms of one-body propagators
(i.e., linearized).68 In general, two-body operators such as V̂ may be
decomposed into combinations of squares of one-body operators,72

V̂ =∑
γ
λγv̂2

γ, (3)

where v̂γ denote linear combinations of (and are therefore also
linear) one-body operators and λγ weight each of those opera-
tors’ contributions to the potential operator. Using such decompo-
sitions, these propagators may then be re-expressed as one-body

propagators using the continuous Hubbard–Stratonovich (HS)
transformation69

e−Δτλγ v̂2
γ = ∫

∞

−∞

dϕ
e−ϕ

2
/2

√

2π
eϕ
√

−Δτλγ v̂γ , (4)

where ϕ is the so-called “auxiliary field.” As e−ϕ
2
/2
/

√

2π is a Gaus-
sian, it may be viewed as a probability and the overall transformation
may be viewed as re-expressing a two-body propagator into an inte-
gral over effective, one-body mean field propagators parameterized
by different auxiliary fields. Note that, while this continuous trans-
formation is more general and can be used to decouple a wide variety
of fermion and boson Hamiltonians,38,69,73 it is often more efficient
when treating Fermi–Hubbard models to employ the discrete ver-
sion of the HS transformation.68,69 Nevertheless, because it is more
general, we will proceed to base our remaining derivations off of the
continuous HS transformation.

Substituting Eq. (4) into Eq. (1), the grand partition function
may finally be written in a form that can be sampled,

Z ≈ Tr(
L

∏

l
e−ΔτK̂/2

∫

∞

−∞

dϕ⃗lp(ϕ⃗l)e∑γ ϕ
γ
l

√

−Δτλγ v̂γ
× e−ΔτK̂/2

) (5)

= Tr(
L

∏

l
∫

∞

−∞

dϕ⃗lp(ϕ⃗l)B̂(ϕ⃗l)) (6)

= ∫

∞

−∞

dϕ⃗1p(ϕ⃗1) . . .∫
∞

−∞

dϕ⃗Lp(ϕ⃗L)Tr(
L

∏

l
B̂(ϕ⃗l)), (7)

as was our initial goal. In the above equation, ϕ⃗l ≡ {ϕ
γ
l }, the vector

of all auxiliary fields, p(ϕ⃗l), is the multivariate Gaussian distribution
formed from the product of each field’s Gaussian distribution, and

B̂(ϕ⃗l) = e−ΔτK̂/2e∑γ ϕ
γ
l

√

−Δτλγ v̂γe−ΔτK̂/2. (8)

One important advantage of working in the grand canonical
ensemble is that, by taking the trace over fermions explicitly, the
numerical complexities of evaluating Tr(∏L

l B̂(ϕ⃗l)) are avoided, and
we obtain

Z ≈ ∫
∞

−∞

dϕ⃗1p(ϕ⃗1)⋯∫

∞

−∞

dϕ⃗Lp(ϕ⃗L)

× det(I + B↑(ϕ⃗L) . . .B↑(ϕ⃗1))det(I + B↓(ϕ⃗L) . . .B↓(ϕ⃗1)), (9)

where taking the trace over the product of B̂(ϕ⃗l) leads to a product
of determinants, one from each of the two spin sectors;40 Bσ(ϕ⃗l) is
the matrix representation of B̂σ(ϕ⃗l) in the single-particle basis; and
I is the identity matrix. The grand partition function may thus be
expressed as a multidimensional integral over auxiliary field space,
which can be efficiently computed via Monte Carlo sampling. It
is based on auxiliary field configurations sampled according to Z
that observables such as energies and site/orbital occupancies may
be determined. While this formalism has proven remarkably use-
ful, it can be exceedingly costly to repeatedly determine the correct
chemical potential at every temperature and system size one wants
to model.
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B. Obtaining canonical ensemble properties
from the grand canonical formalism

One can modify the grand canonical ensemble formalism
described above to compute canonical ensemble quantities by
replacing the Boltzmann factor containing the chemical potential
term in Eq. (1) with e−βĤ and taking the trace in Eq. (7) over all
states in the canonical ensemble instead of in the grand canonical
ensemble. Nevertheless, evaluating the trace over canonical ensem-
ble states is far more complicated than evaluating the trace over
grand canonical ensemble states as the particle number must be
fixed.

This said, several approaches have been advanced over the years
to transform sampling of the grand canonical ensemble into sam-
pling of the canonical ensemble without explicitly taking the trace
over canonical ensemble states. One technique that takes advantage
of grand canonical treatments while still fixing particle numbers is
the particle projection method.63–66 In this technique, the grand par-
tition function, as written in Eq. (7), is multiplied by a constraint on
the particle number in the form of a Kronecker delta, δN̂,N . It turns
out that, by re-expressing the Kronecker delta as a Fourier transform
and integrating, one can arrive at a version of Eq. (9) in which the
determinants are multiplied by a phase factor,63

ZN = ∫ dϕ⃗p(ϕ⃗)
1

Ns

Ns

∑

m=1
e−iψmN det[1 + eiψm B(ϕ⃗)], (10)

where ψm ≡ 2πm/Ns is the frequency of the Fourier transform. As
the key grand canonical equations remain intact, one can sample the
grand canonical ensemble as before but with a chemical potential
that constrains the particle number to fluctuate around a predeter-
mined value. Nevertheless, the same need to scan through chemical
potentials to target particle numbers as in the grand canonical for-
malism makes this approach almost equally burdensome. A more
direct canonical ensemble formalism is therefore crucial for boost-
ing the computational efficiency, if not, feasibility, of many finite
temperature auxiliary field simulations.

C. Canonical ensemble AFQMC algorithm for spinless
bosons and fermions

Given this backdrop, we have approached this problem from
a very different angle: motivated by the simple recursive relations
that can be used to construct the canonical partition functions of
ideal gases,74,75 we have derived an analogous set of recursive rela-
tions to construct canonical partition functions in AFQMC. While
such recursive relations are comparatively easy to construct for
non-interacting systems because the energy spectra of such systems
remain invariant under the addition/removal of particles, they are
far harder to construct for interacting systems that possess many-
body correlations. To surmount this fundamental problem, we have
made use of the pivotal realization that the HS transformation of
Eq. (4) essentially transforms our interacting problems into integrals
over non-interacting problems. Therefore, so long as we can perform
an HS transformation on a many-body Hamiltonian to decouple its
interactions, we can then apply the same recursive relations that have
been used for ideal gases to interacting systems.

We begin by deriving our recursive formalism for the canoni-
cal partition function and then one- and two-body observables for

bosons and spinless fermions. As we will show in the following
derivations, our canonical ensemble formulation is the same for both
types of species except for the different signs that arise in their final
expressions due to their disparate counting statistics.

1. Derivation of a recursive approach for obtaining
the canonical partition function

Therefore, we denote â† and â as particle creation and annihila-
tion operators that can create/annihilate either fermions or bosons,
respectively. The N-particle, canonical ensemble partition function
may be expressed as

ZN = Trc(e−βĤ
), (11)

which we can factor and transform just as we did the grand partition
function to obtain

ZN ≈ ∫

∞

−∞

dϕ⃗1p(ϕ⃗1)⋯∫

∞

−∞

dϕ⃗Lp(ϕ⃗L)Trc(
L

∏

l
B̂(ϕ⃗l)). (12)

In the above equation, we have added a subscript to the trace to dif-
ferentiate it from that in Eq. (7) as the trace can only be taken over
all N-particle quantum states in the canonical ensemble.

Using basic commutation/anticommutation rules, it can be
proven40 that the product of B̂(ϕ⃗l) exactly corresponds to an expo-
nential of some one-body operator parameterized by the auxiliary
field vector ϕ⃗ ≡ {ϕ⃗1, . . . , ϕ⃗L}, which we denote as Â(ϕ⃗),

L

∏

l
B̂(ϕ⃗l) =

L

∏

l
e−ΔτK̂/2e∑γ ϕ

γ
l

√

−Δτγγ v̂γe−ΔτK̂/2
= e−βÂ(ϕ⃗). (13)

We can subsequently define a set of new boson/fermion coordinates
in which Â(ϕ⃗) is diagonal,40

e−βÂ(ϕ⃗)
= e−β∑i,j â†i A(ϕ⃗)ij âj

= e−β∑γ â†γ ε̃γ(ϕ⃗)âγ , (14)

where we call the set of {ε̃γ(ϕ⃗)} the effective single-particle spectrum
because of the following relation:

A(ϕ⃗) =∑
i,j
∣i⟩A(ϕ⃗)ij⟨ j∣ =∑

γ
∣γ⟩ε̃γ(ϕ⃗)⟨γ∣ (15)

and

â†
γ =∑

i
⟨i∣γ⟩â†

i , âγ =∑
i
⟨γ∣i⟩âi. (16)

Since e−Â(ϕ⃗) is an independent-particle propagator that only
depends on the auxiliary field vector, ϕ⃗, the effective single-particle
spectrum, {ε̃γ(ϕ⃗)}, is independent of the particle number. For an
N-particle, Ns-site system, taking the trace while constraining the
particle number yields

Trc(e−βÂ(ϕ⃗)
) = Trc(e−β∑γ â†γ ε̃γ(ϕ⃗)âγ) (17)

=∑

Γ
⟨Γ∣e−β∑γ â†γ ε̃γ(ϕ⃗)âγ ∣Γ⟩ (18)

=∑

Γ
e−β∑

Ns
γ=1 nγ ε̃γ(ϕ⃗). (19)
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Here, Γ is used to represent the set of N-particle states, and thus,
∑Γ ≡ ∑n1+⋅⋅⋅+nNs=N and nγ denotes the number of particles in the
γth eigenstate. For bosons, nγ = 0, 1, . . ., N, whereas for fermions,
nγ = 0, 1. A more detailed derivation of these equations can be found
in the Appendix. The key implication of Eq. (19) is that, for a spec-
ified field ϕ⃗, the single-particle spectrum can be decoupled from the
particle number. Hence, the many-particle energy given such fields
is simply the sum of all of the single-particle energies.

This key fact enables us to move beyond previous projection-
based approaches and calculate Eq. (19) in a recursive fashion. To
do so, we generalize the recursive approach to calculating canonical
ensemble partition functions first developed for ideal gases.74,75 For
an ideal gas of N particles whose total energy can be written as the
sum of single-particle energies {εi}, we can express ZN in terms of its
subsystem partition functions, ZN−k,

ZN =
1
N ∑k=1

(±1)k+1zkZN−k, (20)

with Z0 = 1 and zk, which can be identified as the partition function
of the system at temperature kβ, given by

zk =∑
i

e−kβεi . (21)

Because we can write our decoupled many-body energy in terms
of its single-particle energies, just as in the ideal case, we can then
denote Trc(e−βÂ(ϕ⃗)

) as ZN(ϕ⃗) and re-express it using the same
recursive formalism

ZN(ϕ⃗) =
1
N ∑k=1

(±1)k+1zk(ϕ⃗)ZN−k(ϕ⃗), (22)

with the same starting value Z0(ϕ⃗) = 1 and

zk(ϕ⃗) =∑
γ

e−kβε̃γ(ϕ⃗). (23)

In Eqs. (20) and (22), the plus sign should be employed whenever
Bose statistics are imposed, while the minus sign should be employed
whenever Fermi statistics are imposed. Otherwise, our formalism is
identical for systems of bosons and spinless fermions since these sys-
tems involve only a single particle type and the total particle number
can be constrained by a single value of N. Interestingly, this formal-
ism bears a strong resemblance to a recursive formalism recently
leveraged to incorporate particle statistics into path integral molecu-
lar dynamics simulations.76,77 However, whereas that formalism was
derived with real space path integrals in mind, ours was designed
with an eye toward Fock space.

Combining Eqs. (12), (13), and (22), we thus arrive at our final
recursive expression for the many-body partition function

ZN ≈ ∫ dϕ⃗p(ϕ⃗)ZN(ϕ⃗),

= ∫ dϕ⃗p(ϕ⃗)
1
N ∑k=1

(±1)k+1zk(ϕ⃗)ZN−k(ϕ⃗), (24)

which demonstrates that the many-body partition function may be
recovered by taking the integral over auxiliary field space of all
recursively constructed, field-dependent partition functions. As is

customary, this integral may be evaluated through Monte Carlo
sampling.

2. Derivation of a recursive approach for obtaining
canonical ensemble observables

In the grand canonical ensemble, most observables of inter-
est can be easily expressed in terms of elements of the one-body
density matrix using thermal Wick’s theorem.78 Unfortunately, ther-
mal Wick’s theorem cannot be applied to products of field oper-
ators in the canonical ensemble.79 In this section, we therefore
present an alternative approach to obtaining the expectation values
of such products in the canonical ensemble based on their occupa-
tion numbers, which is in the spirit of Schönhammer’s derivations
for non-interacting fermions.80

In the canonical ensemble, the (i, j)th element of the one-body
density matrix may be expressed as

⟨â†
i âj⟩ =

Trc(â†
i âje−βĤ

)

Trc(e−βĤ
)

. (25)

Since the denominator can be explicitly evaluated via Eq. (24),
we must determine an approach for evaluating the numerator,
the unnormalized version of the one-body density matrix element,
which we denote as D̃ij. We can proceed to re-express the numerator
as we did for the partition function by performing an imaginary-
time breakup and HS transformation of the propagators, which
leads to

D̃ij = Trc(â†
i âje−βĤ

) (26)

≈ ∫ dϕ⃗p(ϕ⃗)Trc(â†
i âje−βÂ(ϕ⃗)

) (27)

= ∫ dϕ⃗p(ϕ⃗)∑
Γ
⟨Γ∣â†

i âj∣Γ⟩e−β∑
M
γ=1 nγ ε̃γ(ϕ⃗). (28)

As is done in Eq. (16), we can simplify this equation by applying a
change of basis to â†

i â†
j to yield

â†
i âj =∑

λ,μ
⟨λ∣i⟩⟨j∣μ⟩â†

λ âμ =∑
λ,μ

U ij
λμâ†

λ âμ, (29)

where U ij
λμ ≡ ⟨λ∣i⟩⟨ j∣μ⟩ is an overlap matrix. This formula allows the

integrand to be expressed as

D̃ij(ϕ⃗) =∑
Γ
∑

λ,μ
U ij
λμ⟨Γ∣â

†
λ âμ∣Γ⟩e−β∑

M
γ=1 nγ ε̃γ(ϕ⃗) (30)

=∑

Γ
∑

λ
U ij
λλ⟨Γ∣â

†
λ âλ∣Γ⟩e

−β∑M
γ=1 nγ ε̃γ(ϕ⃗) (31)

=∑

λ
U ij
λλ⟨nλ⟩N ZN(ϕ⃗), (32)

where the second equality comes from the orthogonality of the
eigenstates. We also define the mean occupation number, nλ, of the
λth eigenstate with the total particle number N as

⟨nλ⟩N =
∑Γ nλe−β∑

M
γ=1 nγ ε̃γ(ϕ⃗)

∑Γ e−β∑
M
γ=1 nγ ε̃γ(ϕ⃗)

, (33)
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which, as is illustrated in detail in the Appendix, can also be calcu-
lated in a recursive fashion,

⟨n̂λ⟩N =
ZN−1(ϕ⃗)
ZN(ϕ⃗)

e−βελ⟨1 ± n̂λ⟩N−1. (34)

Here, the plus sign is again used to preserve Bose statistics, while the
minus sign is used to preserve fermion statistics. As such, combining
Eqs. (28), (32), and (34), we arrive at the final expression for the one-
body matrix elements,

⟨â†
i âj⟩ ≈

∫ dϕ⃗p(ϕ⃗)[∑λ U ij
λλ⟨nλ⟩N]ZN(ϕ⃗)

∫ dϕ⃗p(ϕ⃗)ZN(ϕ⃗)
. (35)

Following a similar scheme, the unnormalized (i, j, k, l)th
element of the two-body density matrix can be expressed as

D̃ijkl = Trc(â†
i âjâ†

k âle
−βĤ
) ≈ ∫ dϕ⃗p(ϕ⃗)D̃ijkl(ϕ⃗), (36)

where

D̃ijkl(ϕ⃗) = [∑
λ≠ν
(U ijkl

λλνν ±U ijkl
λνλν)⟨n̂λn̂ν⟩N

± ∑

λ≠ν
U ijkl
λνλν⟨n̂λ⟩N +∑

λ
U ijkl
λλλλ⟨n̂

2
λ⟩N]ZN(ϕ⃗), (37)

⟨n̂2
λ⟩N =

ZN−1(ϕ⃗)
ZN(ϕ⃗)

e−βελ⟨(1 + n̂λ)
2
⟩N−1, (38)

⟨n̂λn̂ν⟩N =
ZN−1(ϕ⃗)
ZN(ϕ⃗)

[
e−βεν

2
⟨n̂λ(1 ± n̂ν)⟩N−1

+
e−βελ

2
⟨n̂ν(1 ± n̂λ)⟩N−1], (39)

and the change of basis is performed in the following way:

â†
i âjâ†

k âl = ∑
λ,μ,ν,ξ
⟨λ∣i⟩⟨j∣μ⟩⟨ν∣k⟩⟨l∣ξ⟩â†

λ âμâ†
ν âξ

= ∑

λ,μ,ν,ξ
U ijkl
λμνξ â

†
λ âμâ†

ν âξ . (40)

Observe that the expression for ⟨n̂2
λ⟩N only possesses a plus sign,

which stems from the fact that two fermions cannot inhabit the same
site. Again, the plus sign in the above equations corresponds to Bose
statistics, while the minus sign corresponds to Fermi statistics. The
elements of higher order density matrices can be evaluated using
the same basic scheme, which essentially requires manipulating the
order of operators using commutation/anti-commutation relations
to create a sequence of occupation numbers that can be recursively
calculated. With these one- and two-body matrix elements in hand,
we can subsequently compute such important quantities as energies
and correlation functions.

D. Canonical ensemble AFQMC algorithm
for spinful fermions

Developing a canonical ensemble treatment for spinful fermion
systems is naturally more difficult than developing a treatment for
spinless fermion systems due to the additional constraint(s) that
must be imposed on the partition function to constrain the spin
in each spin sector. Moreover, more complicated anticommuta-
tion relations make generalizing our formalism to arbitrary spinful
Hamiltonians, such as ab initio Hamiltonians, far more challenging.
Nevertheless, to simplify our discussion, here we focus on develop-
ing a formalism for treating the Fermi–Hubbard model given by
Eq. (55) as a special but important case, given the model’s long
history in condensed matter physics.

Since spin degrees of freedom may also be decoupled via an
HS transformation for Hamiltonians of this type, Eq. (7) can be
rewritten as

ZN ≈ ∫ dϕ⃗p(ϕ⃗)Trc(
L

∏

l
B̂↑(ϕ⃗l)

L

∏

l
B̂↓(ϕ⃗l)), (41)

which means that spin up and spin down states are propagated sepa-
rately, and we can accordingly define two one-body operators, Â↑(ϕ⃗)
and Â↓(ϕ⃗), such that

e−βÂ↑(ϕ⃗)
=

L

∏

l
B̂↑(ϕ⃗l) (42)

and

e−βÂ↓(ϕ⃗)
=

L

∏

l
B̂↓(ϕ⃗l). (43)

As a result, the partition function under a specified auxiliary field
can be decomposed into the product of two subpartition functions
with N↑ and N↓ particles, respectively,

ZN(ϕ⃗) = ZN↑(ϕ⃗) × ZN↓(ϕ⃗), (44)

which implies that we can perform iterations over particle numbers
for spin up and spin down partition functions separately. Thus, in
line with our previous discussion, we end up with

ZN ≈ ∫ dϕ⃗p(ϕ⃗)[
1

N↑
∑

k=1
(−1)k+1zk(ϕ⃗)ZN↑−k(ϕ⃗)]

× [
1

N↓
∑

l=1
(−1)l+1zl(ϕ⃗)ZN↓−l(ϕ⃗)]. (45)

Although expressions for the one- and two-body density matrix ele-
ments are more difficult to obtain for more general Hamiltonians,
in the case of the Hubbard model, we can independently calculate
matrix elements in different spin sectors, given a set of sampled
auxiliary field vectors, ϕ⃗. Thus, even though the field vectors that
are ultimately sampled depend on both spin sectors, once these are
obtained, the density matrix elements can be calculated separately.
Hence, the unnormalized (i, j)th elements of the spin up/down
one-body matrices take the same form as Eq. (32),

D̃σ
ij(ϕ⃗) =∑

λ
U ij
λλ,σ⟨nλσ⟩Nσ ZN↑(ϕ⃗)ZN↓(ϕ⃗), (46)

with the recursive relation being
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⟨nλσ⟩Nσ =
ZNσ−1(ϕ⃗)
ZNσ (ϕ⃗)

e−βελσ ⟨1 − n̂λσ⟩Nσ−1. (47)

Additionally, the unnormalized (i, j, k, l)th elements of the two-body
density matrix may be obtained via

D̃ijkl(ϕ⃗) =∑
λ,μ

U ij
λλ,↑U

kl
νν,↓⟨n̂λ↑⟩N↑⟨n̂ν↓⟩N↓ZN↑(ϕ⃗)ZN↓(ϕ⃗), (48)

where the change of basis is applied in the following way:

ĉ†i↑ĉj↑ĉ†k↓ĉl↓ =∑
λ,ν
⟨λ∣i⟩⟨j∣λ⟩⟨ν∣k⟩⟨l∣ν⟩ĉ†λ↑ĉλ↑ĉ

†
ν↓ĉν↓

=∑

λ,ν
U ij
λλ,↑U

kl
νν,↓ĉ

†
λ↑ĉλ↑ĉ

†
ν↓ĉν↓. (49)

Note that, for the Hubbard model in which repulsions occur locally,
only the (i, i, i, i)th elements of Eq. (48) have nonzero contributions.

E. Computational details
Although our formulas for the field-dependent partition

functions are exact, as written, these formulas are not necessarily
computationally expedient to evaluate. First, the numerical effort to
evaluate Eq. (22) scales with the square of the particle number N.
Moreover, zk(ϕ⃗) grows exponentially with the inverse temperature
β and the particle number N, which could cause severe numerical
overflow issues at low temperatures.

To mitigate these issues, note that in all mean occupation num-
ber recursions, namely, Eqs. (34), (38), (39), and (47), the partition
functions appear as ratios. Hence, we may circumvent these compu-
tational challenges by calculating the ratios of these partition func-
tions instead of the individual partition functions themselves. To
achieve this, we may sum Eq. (34) over λ and use the conservation of
the particle number to obtain

N =
Ns

∑

λ=1
⟨n̂λ⟩N =

ZN−1(ϕ⃗)
ZN(ϕ⃗)

Ns

∑

λ=1
e−βελ⟨1 ± n̂λ⟩N−1. (50)

Some reordering yields

ZN−1(ϕ⃗)
ZN(ϕ⃗)

=
N

∑
Ns
λ=1 e−βελ⟨1 ± n̂λ⟩N−1

. (51)

Observables may be obtained for each sampled field at a dramatically
reduced cost based on this equation as its cost only scales linearly
with the particle number.

In order to calculate observables that are expressed in terms of
combinations of particle operators, we need to average appropri-
ate combinations of density matrices through a Monte Carlo tech-
nique. As an illustration, we use an arbitrary one-body operator
T̂ = −∑i,j tijâ†

i âj and plug in Eq. (35) to yield

⟨T̂⟩ = −∑
i,j

tij⟨â†
i âj⟩

≈
∫ dϕ⃗p(ϕ⃗)[−∑λ tijU ij

λλ⟨nλ⟩N]ZN(ϕ⃗)

∫ dϕ⃗p(ϕ⃗)ZN(ϕ⃗)

≈
1
n∑Φ⃗
[−∑

λ
tijU ij

λλ⟨nλ⟩N], (52)

with n being the number of Monte Carlo samples and Φ⃗ being
sampled from a Boltzmann-like distribution

P(Φ⃗) =
p(Φ⃗)ZN(Φ⃗)

∫ dϕ⃗p(ϕ⃗)ZN(ϕ⃗)
. (53)

This can be accomplished by using standard sampling algorithms
such as the heat-bath or Metropolis algorithms.81

In this paper, we elect to use the heat-bath algorithm to perform
our integration over auxiliary fields because of its greater efficiency.
If we define R as the ratio of the new field-dependent partition
function ZN(Φ⃗′) to the old partition function ZN(Φ⃗), the accep-
tance ratio of a random flip of discrete auxiliary fields or a random
perturbation to continuous auxiliary fields may be written as

P =
R

1 + R
. (54)

To benchmark this formalism against ED calculations and
assess its performance relative to grand canonical ensemble algo-
rithms, we implemented our own algorithms in Julia. Except where
otherwise indicated, we set Δτ = 0.02 in our calculations to yield
accurate results comparable to those produced by ED, which we
also implemented ourselves for both canonical and grand canonical
ensemble calculations. In general, smaller Δτs lead to more accurate
results. However, the effective single-particle spectrum, {ε̃γ(ϕ⃗)}, is
Δτ-dependent and becomes extremely large when Δτ is too small,
exacerbating the numerical sign problem illustrated in Sec. III B.
Δτ = 0.02 thus is a balance point for us to investigate the mod-
els described in the following over physically meaningful parameter
regimes without sign problems. All canonical ensemble AFQMC
results are averaged over 50 walkers, which each sweep through
the full lattice 2 × 105 times. The grand canonical ensemble results
reported were obtained using a version of our previously described
finite temperature ab initio AFQMC code modified to accommodate
the Fermi–Hubbard model.44 All of the codes that accompany this
work can be found in our project Github repository.82

III. RESULTS AND DISCUSSION
A. Benchmarks against exact diagonalization results
for the Bose and Fermi–Hubbard models

To test the accuracy and analyze the computational perfor-
mance of our canonical ensemble AFQMC (CE-AFQMC) algo-
rithm, we benchmarked it against ED results for both the Bose and
Fermi–Hubbard models. These models have long been used to illus-
trate and study the effects of strong correlation in materials, free
of complicating material-specific details. As its name suggests, the
Fermi–Hubbard model (or, just the “Hubbard” model) exempli-
fies the two most basic behaviors of fermions, hopping and repul-
sion/attraction, on a lattice whose sites represent the locations of
atoms within a material.83–85 The spinful version of this model is
defined by the Hamiltonian

Ĥ = K̂ + V̂

= −t ∑
⟨i,j⟩,σ
(ĉ†iσ ĉjσ + h.c.) + U∑

i
n̂i↑n̂i↓, (55)
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where the first, one-body term describes the hopping of fermions
from site i to nearest-neighbor sites j (⟨ij⟩ denotes all pairs of nearest-
neighbor sites ij), while the second term denotes the local, two-body
fermion–fermion attraction/repulsion on the same site i. t denotes
the hopping parameter, which quantifies the relative magnitude
of the hopping contribution to the Hamiltonian; U is the attrac-
tion/repulsion constant that quantifies the relative magnitude of the
two-body interaction to the Hamiltonian. If U > 0, the fermion–
fermion interaction is repulsive and the fermions are discouraged
from occupying the same site; if U < 0, the fermions are attracted to
one another. ↑ and ↓ denote the up and down spins of the fermions.

The Bose–Hubbard model is a generalization of this model
adapted to model bosons,

Ĥ = K̂ + V̂

= −t∑
⟨i,j⟩

b̂†
i b̂j + U∑

i
n̂2

i , (56)

where b̂†
i /b̂i denote boson creation/annihilation operators at site i

and n̂i = b̂†
i b̂i denotes the boson number operator. As before, t and U

modulate the relative contributions of the boson hopping and inter-
action terms. In the past, this model has been employed to describe
the physics of bosons in optical lattices86 and superfluids.87

In Fig. 1, we compare our canonical ensemble AFQMC results
against canonical ensemble results obtained using ED for a 1D,
three-site Bose–Hubbard model containing three bosons, while in
Fig. 2, we compare our CE-AFQMC and ED results for a 1D, six-site
Hubbard model at half-filling. In order to obtain the total ener-
gies of these systems, we must compute their kinetic energies, Ek,
which are one-body quantities, and potential energies, Ep, which are
two-body quantities, which serve as direct tests of the formalism we
presented for computing many-body density matrices in Secs. II C
and II D. For both systems, we make these comparisons for several
different positive values of U from high temperatures down to suffi-
ciently low temperatures that their energies begin to plateau to their
ground state values. It is apparent from Figs. 1 and 2 that our algo-
rithm yields exact results, within statistical error bars, for both of
these models across all of the U values and temperatures surveyed.
Direct numerical comparisons are presented in the tables in the
supplementary material. Interestingly, whereas the Bose–Hubbard
results monotonically converge to their final plateaus with decreas-
ing temperature, the Fermi–Hubbard results manifest kinks at larger
U values in their potential energy curves between 0.75 and 2 1/kBT,
illustrating the competition that occurs between the model’s kinetic
and potential contributions. These results verify that our formalism
can achieve exact results using the heat bath algorithm described
above over physically meaningful parameter regimes.

B. Emergence of the sign problem
The results presented for the Fermi–Hubbard model above nat-

urally beg the question how does the sign problem arise in this
formalism. After all, the sign problem should arise in this QMC
approach, just as it arises in all previous QMC approaches.88 We
observe two origins of the sign problem in our formalism—one
“physical” and one “numerical.” The unavoidable “physical” origin
of the sign problem in our approach stems from the fact that the
expectation value of the propagator for the states of certain systems
in Eq. (19) can become negative, resulting in a mixture of positive

FIG. 1. Total (Etot), kinetic (Ek), and potential (Ep) energies of a three-site Bose–
Hubbard model simulated for several values of U at t = 1 and N = 3. Energies are
given in units of t.

and negative terms that can cancel one another out during sam-
pling. This physical sign problem corresponds to that which emerges
in grand canonical ensemble algorithms when the trace over grand
canonical states yields products of determinants that can also be
negative.46

While we did not observe such a sign problem in the Fermi–
Hubbard simulations presented above, we did observe the second
numerical form of the sign problem. This numerical sign prob-
lem arises from rounding errors that can accumulate during the
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FIG. 2. Total (Etot), kinetic (Ek), and potential (Ep) energies of a six-site Hubbard
model simulated for several values of U at t = 1 and N↑ = N↓ = 3. Energies are
given in units of t.

calculation of Eq. (34) and has been reported in several previous
papers describing recursive treatments of ideal Fermi gases.79,80,89

More specifically, when a large e−βελ(ϕ⃗) appears in the recursive cal-
culation, its corresponding mean occupation number, ⟨nλ⟩N , tends
to approach 1, yielding ⟨1 − nλ⟩N values as small as 10−15. As illus-
trated in Table IV of the supplementary material, when this occurs,
the corresponding occupation number cannot be correctly repre-
sented by finite precision arithmetic and corrupts the recursion. As
a result, there exists a critical particle number, Nc, at which ⟨nλ⟩Nc

begins to exceed 1 for the λ that corresponds to the largest eigen-
value of e−βA(ϕ⃗), which violates the Pauli exclusion principle and
causes the ratio of partition functions in Eq. (51) to become nega-
tive in turn. This is illustrated for a 16-site Hubbard model in Fig. 3,
from which we can clearly see a rapid collapse of the average sign as
the number of particles surpasses Nc at β = 2 and ξ =∞ (meaning
that no approximations were invoked). In contrast with the physical
sign problem described above, if left untreated, this numerical sign
problem renders the simulation either completely sign-problem-free
or completely noisy as a function of filling.

To curb this problem, we have developed an approximation
similar in spirit to the selection of active spaces in other elec-
tronic structure techniques that strikes a balance between alleviat-
ing the numerical sign problem and biasing the simulation. This
approximation is motivated by the observation that the numerical
instabilities our simulations incur stem from the fact that, at low
temperatures, e−βελ(ϕ⃗)’s become extremely large for small λ’s and
extremely small for large λ’s. Thus, to prevent our results from being
corrupted by round-off errors, the influence of these large and small
e−βελ(ϕ⃗)’s on the other e−βελ(ϕ⃗)’s must be reduced. To accomplish
this, note that εN(ϕ⃗) is the energy level closest to the Fermi level
and, at low temperatures, the occupancies of energy levels far below
the Fermi level tend to be “frozen” around 1. Based on this obser-
vation, a coarse-grained scheme can be devised in which the occu-
pancies of the energy levels ελl(ϕ⃗) (where l denotes lower) are set to
1 (⟨nλl⟩N = 1) if e−β(εN(ϕ⃗)−ελl (ϕ⃗)) > ξ, where ξ is a cutoff value. A
similar approximation can then be made by setting ⟨nλu⟩N = 0 for
energy levels ελu(ϕ⃗) (where u denotes upper) well above the Fermi
level such that e−β(ελu (ϕ⃗)−εN(ϕ⃗))

> ξ. The smaller the ξ, the smaller
the numerical sign problem, but the larger the bias. Conversely, the
larger the ξ, the larger the numerical sign problem, but the smaller
the bias.

That said, we benchmarked the performance of this approxi-
mation against ED for the Hubbard model for different ξ values at

FIG. 3. The average sign of ZN(ϕ⃗) as a function of filling for a 16-site, U = 4
Hubbard model for various β’s and ξ cutoff values. ξ =∞ means that no cutoff
approximation is employed.
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TABLE I. Comparison of QMC calculations with different cutoff thresholds (ξ) against
Exact Diagonalization (ED) results for the U = 4 Hubbard model at β = 5. The λl th
eigenstate is discarded in the recursive calculation if exp(−β(εN(ϕ⃗) − ελl(ϕ⃗)))
> ξ holds, where N = 1

2 ⟨n⟩Ns.

ED QMC, ξ = 103 QMC, ξ = 104

Ns = 6, ⟨n⟩ = 1 −3.6429 −3.61(3) −3.67(6)
Ns = 8, ⟨n⟩ = 0.75 −6.6298 −6.61(1) −6.64(5)
Ns = 8, ⟨n⟩ = 1 −4.5002 −4.44(3) −4.51(5)

different temperatures and U’s, as reported in Table I. As expected, a
finer approximation, ξ = 104, yields more accurate results, and with
this cutoff value, less than 1% of the samples are corrupted by the
numerical sign problem. In contrast, a coarser approximation with
ξ = 103 completely eliminates the numerical sign problem for all
parameter regimes we investigated, but its results are more biased.
To better analyze the applicability of this scheme, we performed
several simulations on the 16-site Hubbard model with U = 4 and
plotted the average sign of the partition function ZN(ϕ⃗) as a function
of filling, ⟨n⟩ = N↑+N↓

Ns
. We chose ξ = 103 to get rid of any effects from

the numerical sign problem, in order to better investigate the emer-
gence of the physical sign problem in our algorithm. As illustrated
in Fig. 3, we find that when the cutoff approximation is applied, the
overall sign problem is greatly improved at β = 2, and the physical
sign problem emerges at ⟨n⟩ = 1, which is a consequence of the fact
that as one iterates over the particle number, some extreme auxiliary
field configurations are more likely to occur. For the β = 4 curve,
one finds that the physical sign problem emerges at ⟨n⟩ = 0.75 and
decreases as the filling increases. These examples demonstrate that
a reasonable choice of ξ can mitigate the numerical sign problem
without significantly biasing the algorithm’s results, highlighting the
algorithm’s overall scalability.

C. Convergence to the ground state
One of the advantages that accompanies simulating in a dif-

ferent ensemble is that properties computed in that ensemble may
converge to the ground state as a function of temperature in a dif-
ferent manner than in the original ensemble. Any differences in
convergence to the ground state between the canonical and grand
canonical ensembles would be particularly important to note in the
context of AFQMC because the higher the temperature at which
properties approximate ground state properties, the more likely that
those properties can be reliably modeled without a significant sign
problem. To draw this comparison between ensembles, we there-
fore simulated the same six-site Fermi–Hubbard model described
in Sec. III A using both our CE and GCE44,62 algorithms from high
to low temperatures at which the model’s properties approach their
ground state values. Note that, although CE and GCE properties
may differ at finite temperatures, they should converge to the same
ground state values. This is because while states with particle num-
bers that differ from the average may be readily accessed in grand
canonical simulations at finite temperatures, the step-like nature of
the particle number vs chemical potential curve that arises at low
temperatures ensures that only states with a fixed N are sampled

in the grand canonical ensemble at temperatures approaching the
ground state. This consequently ensures that the same ground state
energy will be attained in both ensembles. As illustrated in Fig. 4
for U = 2, we find that our CE-AFQMC algorithm converges sig-
nificantly more rapidly than its GCE counterpart—by about a factor
of a few 1/kBT units. Although this may seem small, a few 1/kBT
units can make the difference between being able to secure coveted
insights into low-temperature physics and not. The intuitive reason
why the canonical ensemble converges more rapidly is because, as
alluded to above, it accesses fewer higher-energy states at any given
temperature than the grand canonical ensemble. We expect this con-
vergence difference to grow with increasing U, as evidenced in the
supplementary material. This finding suggests that our canonical
algorithm may assume an essential role in future research focused
on understanding how finite temperature algorithms and proper-
ties converge to the ground state—especially given that ground state
AFQMC algorithms are performed at fixed particle numbers.

D. Scaling relative to the grand canonical AFQMC
algorithm

Given our algorithm’s encouraging ground state convergence
properties, one may ask how it scales with sites and filling relative to
the grand canonical algorithm. Because it relies upon the same imag-
inary time propagation of matrices as the DQMC and GCE-AFQMC
algorithms before it,42,90 it requires O(LN3

s ) operations to construct
its full propagator. If we group all L imaginary time steps into m sets,
the algorithm moreover requires O( L2

m2 N3
s ) operations for numeri-

cal stabilizations, as have previous algorithms.90 The distinguishing
feature of our algorithm is its use of recursions. To initialize recur-
sions, we must diagonalize the matrix e−βA(ϕ⃗), and to account for N
particles, O(N) recursions are required. These two operations thus
involve an additional computational cost that scales as O(N3

s + N).
Therefore, unless N ≫ Ns, the cost of performing recursions is
negligible compared to the usual cost of propagating matrices.

FIG. 4. Six-site Fermi–Hubbard model simulated within the canonical ensemble
with N↑ = N↓ = 3 and the grand canonical ensemble with ⟨N⟩ = 6 (half-filling) at
U = 2. Δτ is set to 0.05 at β = 8 to avoid numerical sign problems. The horizontal
dashed line at E = −5.4095 is the exact ground state energy.
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However, previous DQMC algorithms can rely on the Sherman–
Morrison formula, which only requires O(N2

s ) operations to update
the determinant of a matrix with a rank-one perturbation, to quickly
update their Green’s functions.37,39 Because no analogous formula
exists for updating the eigenvalues of a matrix with a rank-one per-
turbation, as is needed in our algorithm, the numerical cost of updat-
ing quantities after each Monte Carlo step in our approach scales as
O(N3

s ), making it the most expensive part of our algorithm.

IV. CONCLUSIONS
In this work, we have presented a new finite temperature

AFQMC formalism for computing observables within the canoni-
cal ensemble. Unlike previous canonical ensemble algorithms, which
relied upon projecting canonical ensemble properties out from
grand canonical simulations, our formalism is based on recursions
among purely canonical ensemble quantities, eliminating the costly
need to scan through chemical potentials to fix average particle
numbers in most DMC and AFQMC simulations. To verify the
accuracy of our approach while also demonstrating its broad appli-
cability, we used our algorithm to calculate thermal properties of the
Bose and Fermi–Hubbard models, quintessential models of strong
correlation, and benchmarked it against ED results. We moreover
demonstrated that our canonical algorithm converges to ground
states more rapidly with decreasing temperature than conventional
grand canonical AFQMC algorithms, which illustrates its promise
for studying how low-temperature phenomena ultimately give rise
to ground state phenomena.

Although we presented a rather limited range of illustrations of
our algorithm here, we foresee our algorithm having a wide variety
of practical applications. First and foremost, because our canon-
ical ensemble approach definitively fixes the particle number, we
believe that it will eliminate the “rogue eigenvalue problem” that
curtails the direct application of grand canonical AFQMC algo-
rithms to boson and fermion condensates whose average particle
numbers become challenging to fix at low temperatures.62 This will
enable the study of low temperature Bose and Bose–Fermi conden-
sates62 as well as superconductors91 with the high accuracy typical of
AFQMC techniques. In addition, our algorithm will enable apples-
to-apples, canonical ensemble comparisons between FT-AFQMC
and other canonical ensemble finite temperature electronic structure
techniques, such as density matrix QMC92 and finite temperature
coupled cluster approaches,18–21 for the first time. Some of these
comparisons will necessitate generalizing our formalism to arbitrary
ab initio Hamiltonians, which is an ongoing effort. This will provide
the community with the critical ability to compare and refine finite
temperature methods, much as has been recently done for ground
state electronic structure techniques.93,94

SUPPLEMENTARY MATERIAL
Supplementary data including additional benchmarks and an

illustration of the numerical sign problem may be found in the
supplementary material.
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APPENDIX: DETAILED DERIVATION OF PARTITION
FUNCTIONS AND UNNORMALIZED DENSITY
MATRICES

In this appendix, we provide detailed derivations of several
recursive relations that are essential to obtaining the partition func-
tions and density matrices for a specific auxiliary field. Some of these
equations have been derived in other contexts before.62,96–98

First, we derive Eqs. (17)–(19), which undergird our expres-
sions for the canonical partition function. Suppose we have an arbi-
trary N × N matrix A expressed in the single-particle basis and form
two Fock-space operators that operate on boson and fermion Fock
states, respectively,

Âb = b̂†Ab̂, (A1)

Âf = ĉ†Aĉ. (A2)

We then consider the operations Âbb̂† and Âf ĉ†. Using the elemen-
tary commutation/anticommutation relations, it is straightforward
to show that

Âbb̂†
k =∑

ij
b̂†

i Aijb̂jb̂†
k

=∑

i
b̂†

i Aik + b̂†
k∑

ij
b̂†

i Aijb̂j, (A3)

Âf ĉ†k =∑
ij

ĉ†i Aijĉjĉ†k

=∑

i
ĉ†i Aik −∑

ij
ĉ†i ĉ†kAijĉj

=∑

i
ĉ†i Aik + ĉ†k∑

ij
ĉ†i Aijĉj, (A4)

which gives

Âbb̂†
= b̂†
(A + IÂb), (A5)

Âf ĉ† = ĉ†(A + IÂf ), (A6)

where I is the N ×N unit matrix. Note that the elements of the matri-
ces A and I are c numbers in Fock space and Â is a scalar relative to
the N × N matrices. As a result, IÂ and A commute as matrices.
Repeatedly applying these two equations yields
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Ân
b b̂†
= b̂†
(A + IÂb)

n, (A7)

Ân
f ĉ† = ĉ†(A + IÂf )

n (A8)

for any positive integer n. Hence,

e−Âb b̂†
= b̂†e−(A+IÂb)

= b̂†e−Ae−Âb , (A9)

e−Âf ĉ† = ĉ†e−(A+IÂf )
= ĉ†e−Ae−Âf (A10)

can be shown inductively, where in the last step of both equations,
the exponential is allowed to be broken up because the two terms in
the exponent commute, as noted above. These results allow e−βÂ(ϕ⃗)

in Eq. (17) to “walk through” the string of creation operators that
defines the N-particle state |Γ⟩. More specifically, by expanding |Γ⟩
in terms of particle creation operators, we have

e−Â(ϕ⃗)
∣Γ⟩ = e−β∑γ â†γ ε̃γ(ϕ⃗)âγ

∏

γ
(â†

γ)
nγ
∣0⟩

=

⎡
⎢
⎢
⎢
⎢
⎣

∏

γ
(â†

γe−βε̃γ(ϕ⃗))nγ
⎤
⎥
⎥
⎥
⎥
⎦

e−Â(ϕ⃗)
∣0⟩

=

⎡
⎢
⎢
⎢
⎢
⎣

∏

γ
(â†

γe−βε̃γ(ϕ⃗))nγ
⎤
⎥
⎥
⎥
⎥
⎦

∣0⟩, (A11)

where, in the last step, we have used the fact e−Â(ϕ⃗)
∣0⟩ = ∣0⟩. Thus,

sandwiching e−Â(ϕ⃗) between ⟨Γ| and |Γ⟩ yields

⟨Γ∣e−Â(ϕ⃗)
∣Γ⟩ =∏

γ
e−βnγ ε̃γ(ϕ⃗), (A12)

which enables us to proceed from Eqs. (18) and (19). Note that
Eqs. (A9) and (A10) have exactly the same form. As such, Eq. (A12)
holds true for both boson and fermion propagators as they propagate
the corresponding states in the same manner.

Next, we show how to iteratively obtain the mean occupa-
tion numbers of the eigenstates, as well as the products of those
occupancies, i.e., Eqs. (34), (38), and (39). These are needed to
evaluate a system’s energy and correlation functions. Since bosons
and fermions possess different particle statistics, we provide their
derivations separately, starting with those for bosons.

To arrive at Eq. (34), without loss of generality, we consider the
λ = 1 case of Eq. (33). By definition,

⟨n̂1⟩N =
∑{nλ}N

1
n1e−β∑

Ns
γ=1 nγεγ

ZN
, (A13)

where we have introduced the shorthand {nγ}N
1 to denote all states

that conserve their particle number such that∑Ns
γ=1 nγ = N and have

omitted all field dependence for clarity. Since n1 can take values from
0 up to N for bosons, the above equation can be re-expressed as

⟨n̂1⟩N ZN =
N

∑

n1=0
n1e−βn1ε1

∑

{nγ}
N−n1
2

e−β∑
Ns
γ=2 nγεγ

=

N

∑

n1=1
(1 + n1)e−β(1+n1)ε1

∑

{nγ}
N−n1−1
2

e−β∑
Ns
γ=2 nγεγ

= e−βε1
∑

{nγ}N−1
1

(1 + n1)e−β∑
Ns
γ=1 nγεγ

= e−βε1
⟨1 + n̂1⟩N−1ZN−1, (A14)

where in the first equality, we can perform the sum over n1 first and
leave the rest constrained by the particle number conservation con-
straint {nγ}N−n1

2 ≡ ∑
Ns
γ=2 nγ = N−n1, while in the second equality, we

have used the fact that the enumerations of {n2, . . . , nNs} are inde-
pendent of {n1 = 0}. This allows us to count n1 from n1 = 1, instead
of n1 = 0. Replacing n̂1 with n̂2

1 in the expectation values above gives

⟨n̂2
1⟩N ZN = e−βε1

⟨(1 + n̂1)
2
⟩N−1ZN−1. (A15)

The procedure leading to Eq. (A14) can be easily extended
to calculate expectation values of products of different occupation
numbers, i.e., ⟨ninj⟩N with i ≠ j. Replacing n̂1 with n̂1n̂2 and observ-
ing that the enumerations of {n3, . . . , nNs} are independent from
{n1 = 0, n2 = 0}, one obtains

⟨n̂1n̂2⟩N =
ZN−2

ZN
e−β(ε1+ε2)

⟨(1 + n̂1)(1 + n̂2)⟩N−2, (A16)

which is equivalent to Eq. (39) as the indices in that equation are
dummy variables, and hence, the equation can be rewritten into a
symmetric form.

Since nγ can only be 0 and 1 for fermions, we arrive at the
following two identities:

∑

nγ=0,1
nγe−βnγεγ

= e−βεγ , (A17)

∑

nγ=0,1
(1 − nγ)e−βnγεγ

= 1. (A18)

Substituting these identities into the recursive relation for the mean
occupation number [Eq. (A13)] yields

⟨n̂1⟩N ZN = e−βε1

nγ=0,1

∑

{nγ}N−1
2

e−β∑
Ns
γ=2 nγεγ

= e−βε1

nγ=0,1

∑

{nγ}N−1
2

(1 − n1)e−β∑
Ns
γ=1 nγεγ

= e−βε1
⟨1 − n̂1⟩N−1ZN−1. (A19)

Proceeding along similar lines yields the fermion version of
Eq. (A16),

⟨n̂1n̂2⟩N =
ZN−2

ZN
e−β(ε1+ε2)

⟨(1 − n̂1)(1 − n̂2)⟩N−2. (A20)

These are precisely the equations referenced in the text.
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DATA AVAILABILITY

The data that support the findings of this study are also
openly available in the Zenodo repository at https://doi.org/10.5281/
zenodo.3991899.95
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