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Quantum systems of infinite dimension, such as bosonic oscillators, provide vast resources for
quantum sensing. Yet, a general theory on how to manipulate such bosonic modes for sensing
beyond parameter estimation is unknown. We present a general algorithmic framework, quantum
signal processing interferometry (QSPI), for quantum sensing at the fundamental limits of quantum
mechanics, i.e., the Heisenberg sensing limit, by generalizing Ramsey-type interferometry. Our
QSPI sensing protocol relies on performing nonlinear polynomial transformations on the oscillator’s
quadrature operators by generalizing quantum signal processing (QSP) from qubits to hybrid qubit-
oscillator systems. We use our QSPI sensing framework to make binary decisions on a displacement
channel in the single-shot limit. Theoretical analysis suggests the sensing accuracy given a single-shot
qubit measurement can approach the Heisenberg-limit scaling. We further concatenate a series of
such binary decisions to perform parameter estimation in a bit-by-bit fashion. Numerical simulations
are performed to support these statements. Our QSPI protocol offers a unified framework for
quantum sensing using continuous-variable bosonic systems beyond parameter estimation and
establishes a promising avenue toward efficient and scalable quantum control and quantum sensing
schemes beyond the NISQ era.
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I. INTRODUCTION

Sensing and metrology are fundamental pursuits of
science and technology, and quantum systems have
been used to advance metrological precision to new
bounds [1–4]. Typical quantum sensing protocols involve
manipulation of quantum coherence and entanglement
followed by measurement to extract useful classical
information from quantum systems.
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The efficiency of different quantum sensing protocols
varies by construction. At a high level, any sensing
protocol can be assessed by the space and time resource
requirements (e.g., the size of the quantum sensor,
any required repetition of the experiments, the length
of the sensing protocol) it needs to achieve a given
sensitivity in the sensing task, for example estimating
a given parameter to a certain precision. The intrinsic
probabilistic nature of quantum systems necessarily
introduces uncertainty to the measurement of any sensing
protocol, leading to the so-called standard quantum
limit (SQL). In the SQL, the standard deviation of the
estimated parameter scales inversely as the square-root
of the space and time resources employed, as is familiar
in processes involving shot noise.

By leveraging non-classical properties of quantum
states like entanglement [5, 6] and general quantum
correlations [7] as resources for sensing, sensitivity in
parameter estimation can be improved beyond the SQL
to approach a more fundamental physical limit, the
Heisenberg limit (HL). The HL dictates that the scaling
of precision with total sensing time t can be no better
than 1/t; equivalently, with N probes used in an
experiment, the precision scales no better than 1/N .

In fact, this fundamental physical limit has been
achieved by a number of sensing protocols. One of the
oldest and best-known is the interferometric protocol
known as cat-state sensing, named after Schrödinger’s cat
for its use of superpositions of two distinct macroscopic
states, such as the all-spin-up and all-spin-down states
in a multi-atom system. This protocol, first realized
for spin-states in 1996 by Bollinger et al., achieves the
optimal bound for frequency uncertainty of an N -particle
system [8]. This optimal HL bound, equal to (NT )−1,
where T is the time for a single repetition of the protocol,
is achieved by modifying the Ramsey technique [9] to use
a maximally correlated GHZ state and a different final
measurement operator. As it achieves the HL limit, this
variety of cat-state sensing for spin systems has found
broad application in precision phase sensing for atomic
clocks [10, 11], where variational quantum algorithms are
incorporated into multi-qubit Ramsey interferometry to
iteratively optimize the sensing precision.

However, many other parameters of interest, such
as electric fields [12], can be better sensed by bosonic
modes (e.g., photonic and phononic oscillators) than
spin systems. Bosonic sensors have been employed
to perform precision sensing of small displacements
to bosonic oscillators, and there have been many
advances investigating the advantages of utilizing bosonic
resource states [13, 14]. Gilmore et al. have found
that coupling the spins of a trapped-ion crystal to
their collective motional mode offers sub-SQL sensing
performance, with the quantum enhancement achieved
through interferometry of highly-entangled spin-motion
cat states [15]. Using the interference between squeezed
light, the Advanced LIGO [16] experiment can detect
the space-time curvature change caused by gravitational

waves. Additionally, coupling bosonic modes to other
degrees of freedom can transfer information from one
subsystem to another in order to facilitate more
convenient measurement than the direct measurement
of the bosonic modes themselves [17]. In spectroscopy,
entangled cat-state laser sources have also been used to
enhance signals by an order of magnitude [18]. Beyond
the single-mode case, it has been demonstrated that the
entanglement of many modes can provide HL-sensing
enhancement [19, 20]. Furthermore, various efficient
HL-scaling Hamiltonian learning protocols have been
proposed, including some on bosonic systems, that can
be rephrased as multi-parameter estimation problems
[21, 22].

Beyond parameter estimation, there are many
other sensing applications that have been left largely
unexplored, for example, single-shot decision making.
For such decision-making problems, the underlying signal
can happen rarely, such as the case of gravitational wave
detection [1], and it is therefore crucial to obtain useful
information in the single-shot limit. When events are
rare, many iterative protocols for parameter estimation
and learning [22, 23] are challenged. Despite the success
of bosonic systems and cat state sensing for parameter
estimation, a unified protocol for general sensing tasks is
unknown, particularly in scenarios where decisions must
be made in the single-shot limit.

Protocols for realizing such general sensing tasks
should generally build on the ability to perform
transformations of the underlying signal. Not
surprisingly, transformation of classical signals has been
extensively studied in the context of signal processing
in electrical engineering [24], where state-of-the-art
classical algorithms have been developed to design
a variety of filters that transform the underlying
classical signals tailored to the desired purposes [25,
26]. Inspired by classical signal processing, quantum
signal processing (QSP) algorithms [27–39] can achieve
arbitrary polynomial transformations on one or more
quantum amplitudes. Given the triumphs of classical and
quantum signal processing, might it be possible to adopt
the philosophy of filter design to bosonic systems such
that quantum signals on oscillators can be transformed
for general sensing tasks?

In the present work, we develop a novel algorithmic
protocol for general quantum sensing tasks beyond
parameter estimation using interferometric bosonic
modes in a way which enables systematic and analytically
predictive improvement of single-shot decision error
beyond what is possible with traditional sensing
protocols. This QSP interferometry (QSPI) protocol
builds on a theory of bosonic QSP that can
perform polynomial transformation on the block-encoded
quadrature operators of bosonic modes using qubit
rotations and qubit-oscillator entangling gates [40, 41].
The core of our QSPI protocol lies in these polynomial
transformations generating nonclassical resource states
for interferometery. Just as in typical Ramsey
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experiments [9], the signal being sensed in a QSPI
experiment is queried only once, and the power of
quantum enhancement comes from generating a non-
classical resource state by increasing the QSP circuit
length. This single-shot feature distinguishes our work
from much prior art [21–23].

We demonstrate the performance of the QSPI
protocol with a theoretical analysis which optimally
extracts binary decision information about a quantum
displacement channel, achieving HL-like scaling (see
Def. 1). As a concrete pedagogical example, we focus
on the task of distinguishing whether a displacement
channel has a displacement amount above or below a
given threshold. Note that such decision problems are
ideal for qubit-oscillator systems because we desire a
single-shot measurement that answers a question about
the channel acting on a bosonic quantum state with high
probability. Given that the qubit is naturally binary
under classical projection measurement, extracting a
yes/no answer from the qubit should be much faster than
extracting a continuous-valued answer by measuring the
oscillator. This intuition is satisfied by our construction.
We also show how to utilize protocols for such simple
decision problems to perform more complex tasks such as
bit-by-bit estimation of the magnitude of a displacement.

The presentation below is organized as follows. We
begin in Sec. II with a formal statement of the problem
scenario and the expected performance using traditional
cat-state sensing, then build on this to exhibit the
new quantum signal processing interferometry protocol
and its provably improved performance in Sec. III.
Building upon this, Sec. IV analyzes analytically the
performance of our QSPI protocol for making binary
decisions about the displacement parameter. Sec. V
then demonstrates the use of such a decision-making
subroutine to perform parameter estimation on the
magnitude of a displacement by combining with classical
decision-making theory. Sec. VI presents numerical
results, revealing a Heisenberg-limit-like scaling in the
decision error, agreeing with analytical expectations.
Conclusions and outlook are given in Sec. VII.

II. A BINARY BOSONIC DECISION PROBLEM

In this section, we first set up some notation and
define quantum decision-making problem in displacement
sensing, as well as what HL-like behavior is for decision
problems in Sec. II A. In Sec. II B we review the basics
of a typical displacement-sensing protocol based on cat-
state interferometry, highlighting its advantages and
limitations to motivate why a more general sensing
scheme is required.

A. Quantum Decision-Making for a Displacement
Channel

We consider a quantum sensing problem in a
joint qubit-oscillator system subjected to a unitary
displacement channel Sβ

Sβ :=

[
eiβp̂ 0
0 eiβp̂

]
, (1)

where we have written Sβ under the joint qubit-
oscillator tensor product form such that Sβ = I ⊗ eiβp̂

and β is the amount of the position kick acting on
the oscillator; eiβp̂ |x⟩osc = |x− β⟩osc for a position
eigenstate |x⟩osc (the subscript “osc” refers to “oscillator”
to distinguish it from the qubit register). The symbol
:= represents definition of a quantity, and x̂, p̂ are the
oscillator’s canonical position and momentum operators,
respectively. On the joint system, we assume the resource
gates are arbitrary single-qubit rotations RX(2θ) :=
eiθσx and a fixed qubit-oscillator entangling gate

Dc(iκ/
√
2) = eiκx̂σz (2)

parameterized by κ, where Dc(iκ/
√
2) is a conditional

displacement gate that imparts a momentum kick ±κ
to the oscillator depending on the qubit state being |0⟩
or |1⟩. σx, σz are the single-qubit Pauli matrices. This
entangling gate is derived from the usual definition of
a more general conditional displacement gate in phase

space Dc(α) := e(αa
†−α∗a)σz by setting α = iκ/

√
2.

Moreover, the gate in Eq. (2) is an operator with support
on the infinite-dimensional qubit-oscillator joint Hilbert
space. When acting on a position eigenstate of the
oscillator |x⟩osc, the gate given in Eq. (2) reduces to
eiκxσz which is simply a 2 × 2 operator acting on the
qubit. Throughout the paper, we shall use x̂, p̂ and x, p
to distinguish the two different ways of using position and
momentum as operators or real numbers. The product of
κx̂ on the right-hand side of Eq. (2) also means the gate
itself will be periodic in the oscillator position x with a
period of Tx = 2π

κ .
With these notations established, we are ready to

define the quantum decision-making problem on the
displacement channel:

Main Problem (Quantum Binary Decision-Making for
a Displacement Channel). Given βth > 0, construct
a quantum circuit by using the resource gates RX

and Dc(iκ/
√
2) a maximum of d times for some κ to

determine whether |β| > βth or |β| < βth with only a
single query to Sβ, such that the probability of making an
erroneous decision, perr, is small.

Clearly, the probability perr of erroneous decision will
depend on κ, βth, and d. Due to the periodicity of Eq. (2)
in x, any unitary constructed from repeated applications
of Dc(iκ/

√
2) and RX will be periodic in x with the same

period Tx. As will be discussed in Sec. III C (also see
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Fig. 3), the periodicity in x for the Dc(·) gate results in a
period of Tx/2 for perr in terms of the sensing parameter
β. This allows us to define a restricted region (− π

2κ ,
π
2κ )

where the sensing problem will be discussed. This notion
of periodicity is similar to the concept of a “unit cell”
in solid state physics [42]. Therefore, it is necessary to
choose κ to be small enough such that β ∈ (− π

2κ ,
π
2κ )

(in particular, βth as well). However, κ cannot be too

small, or else Dc(iκ/
√
2) will become too close to the

identity operator, and its action on the qubit-oscillator
system will not be effective. In the rest of the paper,
we assume that κ has been fixed with these conditions
satisfied. Furthermore, (as detailed in Appendix B) perr
is an even function of β; therefore, we only consider the
case of βth > 0, as given in Main Problem.
Once we are given βth and have fixed κ as described

above, it is instructive to consider how perr scales as the
number of resource gates d in the sensing protocol. In
the single-shot limit, since we are only allowed to query
the signal Sβ once, it is not difficult to see that the
most general single-shot decision-making protocol is as
given in Fig. 1a, where a state preparation routine is
first used to prepare the joint qubit-oscillator system at
some entangled quantum state, after which the signal
of interest occurs to the oscillator. In the end, a signal
decoding operation is applied to create some interference
followed by a single-qubit measurement to extract the
answer to the decision problem. Inspired by the definition
of HL scaling in parameter estimation tasks, as discussed
in Sec. I, we define HL-like scaling for the Main Problem:

Definition 1 (HL-like Scaling for Binary Decision
error in the Main Problem.). A sensing protocol
achieves Heisenberg-limit-like (HL-like) scaling for
binary decision-making with a displacement channel in
the Main Problem if the resulting perr ∼ O(1/d) up to a
factor of polylog(1/d).

In the following section, we will consider a concrete
realization of the general single-shot decision-making
protocol (Fig. 1a), the cat state sensing protocol, to gain
some intuition.

B. Intuition from Cat-State Sensing

The intuition for building a QSP interferometer
comes from the cat-state protocol for sensing small
displacements. A typical sensing scheme is shown
in Fig. 1b where a Hadamard gate and a controlled
displacement Dc(iκ/

√
2) = eiκx̂σz are first used to

prepare an entangled state of the qubit-oscillator joint
system from an initial state of qubit at |↓⟩ and oscillator
at vacuum |0⟩osc (first dashed blue box). The subscript
c in Dc(·) means the displacement is controlled by the
qubit. Then the underlying signal (a displacement Sβ =
eiβp̂) is applied to the oscillator and followed by another
controlled displacement and a Hadamard gate (inverse of

the previous dashed blue box). Finally, a qubit Z-basis
measurement is performed.

FIG. 1. The most general single-shot decision-making
protocol (a), and two realizations comparing the traditional
cat-state sensing protocol (b) with the novel bosonic QSP
interferometric protocol (c). In (c), the QSP operator creates
an optimal sensing state, which then probes the signal Sβ and
is finally un-created to produce desired interference, which is
followed by a measurement on the qubit.

Using the commutation relationship between x̂ and p̂
we have the following relation

eiκx̂eiβp̂ = eiβp̂eiκx̂e−iκβ , (3)

which simplifies the final state of the joint qubit-oscillator
system before the measurement to

|Ψout⟩ = (cos(κβ) |↓⟩+ i sin(κβ) |↑⟩)⊗ e−iβp̂ |0⟩osc , (4)

provided that the initial state is |↓⟩ ⊗ |0⟩osc. Therefore,
the displacement β is encoded in the amplitude of the
ancilla qubit, where the measurement probability p of
the qubit in |↓⟩ is

p = Prob[M =↓] = cos2(κβ). (5)

Since κ is known, we can repeat this sensing protocol
multiple times in order to obtain an estimate of this
probability, which will then tell us the value of β.
More concretely, by repeating the protocol N times,

the standard deviation for estimating β is given by ∆β:

∆β =
∆p∣∣∣ dpdβ ∣∣∣ =

1

2κ
√
N

(6)

where ∆p =
√

p(1−p)
N is the standard deviation on

p, estimated by performing N experiments with a
Bernoulli distribution, and the total time t for repeating
the sensing protocol N times will be t ∝ N . An
interesting observation immediately follows from Eq. (6):
for fixed N , ∆β improves roughly as 1/κ, where κ is
the displacement amount of the Dc(·) gate. The physical
intuition is that the cat state’s small interference features



5

in phase space have a characteristic length of 1/κ. As a
result, the sensitivity on estimating a spatial variation in
β improves as 1/κ. It follows that taking κ large would
be beneficial to making high-sensitivity measurements.
Such large κ can be realized in several ways, depending
on the physical platform. For example, in trapped ions,
a large κ may be realized by increasing the laser pulse
intensity or by increasing the pulse duration [40].

Despite its favorable sensing scaling in κ for
displacement sensing, the cat-state sensing protocol has
some limitations. First, for fixed κ, ∆β decreases as 1√

N

(or 1√
t
) as the number of classical repetitionsN increases.

This is the typical shot noise statistical convergence
rate corresponding to the SQL and is sub-optimal as
compared with HL scaling. Second, aside from parameter
estimation on β, the cat-state sensing protocol is not
particularly useful if we are only interested in learning
partial information about the properties of β, for example
determining if β is above or below a given threshold
value βth. Since only partial information is needed in
such scenarios, it is expected that more efficient sensing
protocols exist.

As alluded to earlier in the Introduction, filter
designs in classical signal processing and advancement in
quantum algorithms provide possibilities for overcoming
the two aforementioned limitations such that: 1)
Heisenberg limit scaling can be achieved for parameter
estimation, where ∆β ∝ 1/N ; and 2) the resulting
sensing protocol works for other sensing tasks that only
extract partial information about β. The intuition is as
follows: recall that the key feature of bosonic cat-state
sensing is producing a fine-grained interference pattern in
phase space that is sensitive to the displacement signal.
If the N incoherent repetitions of the cat-state sensing
protocol can be concatenated together into a single-shot
coherent protocol which coherently manipulates the phase
space interference pattern beyond that produced by the
simple cat-state interferometer, then the coherent sensing
state can be made sensitive to the partial information
that we seek from the signal. In the next section, we
give a construction of a novel QSP interferometer that
circumvents the above two limitations and achieves HL-
like behavior for decision problems.

III. QUANTUM SIGNAL PROCESSING
INTERFEROMETRY

Before presenting the QSPI construction, we first
formulate a theory of bosonic QSP by alternating single-
qubit rotations with controlled-displacement operations
in Sec. III A and show how to utilize this bosonic QSP
approach as the basic building block to produce general
sensing algorithms. Building upon the bosonic QSP
theory for polynomial transformations of quadrature
operators as well as the cat state sensing protocol above,
we define and construct a novel QSP interferometer on
hybrid qubit-oscillator platforms and present a new QSPI

Theorem in Sec. III B. Detailed analysis of the behavior
of the QSP interferometer for a displacement operator is
discussed in Sec. III C.

A. Bosonic QSP Formalism

Coupling a bosonic oscillator to a qubit is a useful
approach for achieving universal control of the oscillator
[43]. It has been shown that simple Jaynes-Cummings
type interactions can achieve universal control on an
arbitrary low-energy d-dimensional subspaces of an
oscillator [44, 45]. By using an alternative dispersive
coupling, universal control on oscillators has also been
demonstrated using the echo-controlled displacement
operator [41]. Here, we draw a connection between
these control protocols with quantum signal processing
to develop a bosonic QSP formalism as a basic building
block for the rest of the paper.
Quantum signal processing relies on two components:

1) a block-encoding of the signal operator; and 2)
the ability to impart an arbitrary phase shift to the
block-encoded operator. Block-encoding simply means
embedding the target operator inside a known and
accessible subspace of a unitary matrix. Methods for
block-encoding on qubit devices are mostly limited to
linear combination of unitaries [46, 47], and block-
encoding of a general Hamiltonian seems to be difficult.
It might thus seem that such block-encoding will be
especially challenging in our case, as we need to block-
encode an entire oscillator (with infinite dimension)
into a unitary matrix in order to perform QSP on
the oscillator. Surprisingly, some physical interactions
between quantum systems can provide natural block-
encodings of one system in the basis of the other
for qubit-oscillator systems, as is stated formally in
Lemma 1.

Lemma 1 (Qubitization of a Bosonic Mode via
Qubit-oscillator Physical Interaction). Coupling between
a qubit Pauli operator σz and a bosonic mode’s
quadrature operators, h(x̂, p̂), naturally block-encodes the
bosonic mode’s unitary evolution operator ω(x̂, p̂) =
e−ih(x̂,p̂)t.

The above statement immediately follows if we write
the resulting unitary under the representation of the
qubit’s SU(2) matrix,

Wz := e−ih(x̂,p̂)σzt =

[
ω(x̂, p̂) 0

0 ω−1(x̂, p̂)

]
. (7)

Note that the choice of σz here is only a convention,
and any coupling can always be rotated into the σz
representation. Also, note that ω(x̂, p̂) is an operator
on the oscillator rather than a complex number.
Now, given the qubitization of a bosonic mode, we

are ready to state a bosonic quantum signal processing
theorem that summarizes the achievable polynomial
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transformations on the quadrature operator ω(x̂, p̂), as
defined in Lemma 1.

Theorem 2 (Bosonic Quantum Signal Processing).

The following quantum circuit parameterized by θ⃗ =
{θ0, ..., θd} achieves a block-encoding of a degree-d
Laurent polynomial transformation on ω(x̂, p̂) as F (ω)

Qθ⃗(ω) = eiθdσx

d−1∏
j=0

Wze
iθjσx =

[
F (ω) iG(ω)

iG(1/ω) F (1/ω)

]
,

(8)

where (setting t = 1 for simplicity)

F (ω) =

d∑
n=−d

fnω
n =

d∑
n=−d

fne
−ih(x̂,p̂)n := f(x̂, p̂), (9a)

G(ω) =

d∑
n=−d

gnω
n =

d∑
n=−d

gne
−ih(x̂,p̂)n := g(x̂, p̂). (9b)

for n = {−d,−d + 2,−d + 4, ..., d}, fn, gn ∈ R,
F (ω)F (1/ω) + G(ω)G(1/ω) = 1, and h(x̂, p̂) is an
analytical function of the bosonic mode’s quadrature
operators. Inversely, given F (ω) in Eq. (9a) and

F (ω)F (1/ω) < 1, there exists θ⃗ = {θ0, ..., θd} such that
the construction in Eq. (8) block-encodes F (ω).

The proof of Theorem 2 follows from the normal
QSP proof on single qubit [28] or the periodic function
formulation [48] once Qθ⃗(ω) is expanded under the
infinite sets of eigenstates of h(x̂, p̂). A detailed proof can
be found in App. A. We note that despite the similarity
to single-qubit QSP, bosonic QSP is formally an infinite-
dimensional theorem.

In general, h(x̂, p̂) can be any physically realizable
Hamiltonian of the oscillator (i.e., not only finite degree
polynomials but also analytic functions). To the lowest
order, h(x̂, p̂) can be a linear function of x̂ and p̂, which
generates a displacement in the phase space: h(x̂, p̂) =
αâ†−α∗â. Coupling h to a qubit Pauli operator generates
a qubit-controlled displacement. Consider the special
case where a simple qubit-oscillator coupling naturally
arises on cQED hardware [49] or in trapped ions [50];
we have h(x̂, p̂)t = −κx̂, where t denotes the duration
of the qubit-oscillator interaction or coupling, which
generates a displacement operator to boost the oscillator
momentum by an amount of κ. From Lemma 1, it is
readily realized that the physical dynamics generated
from this coupling Hamiltonian form a block-encoding
of the oscillator operator ω := eiκx̂. Combined with
Theorem 2, we have

F (ω) =

d∑
n=−d

fne
iκx̂n := f(x̂), (10a)

G(1/ω) =

d∑
n=−d

gne
iκx̂n := g(x̂), (10b)

where n = {−d,−d + 2,−d + 4, ..., d}, and d is the
degree of QSP, as specified in Theorem 2. The achievable
functions and parity constraints upon Qθ⃗(ω) for ω ∈ C
are described in [48]. Note that in this case ω is a unitary
operator that maps oscillator position x ∈ (−∞,∞) to
the complex unit circle, so f(x̂) and g(x̂) are periodic
functions with a period Tx = 2π

κ . For an integer m:

f(x̂+mTx) = f(x̂), (11a)

g(x̂+mTx) = g(x̂). (11b)

The overall construction of the bosonic QSP circuit
from Theorem 2 is shown in Fig. 2, where the conditional
displacement operator and single qubit rotations are
performed repeatedly. Since this construction performs
an arbitrary degree-d real Laurent polynomial on ω with
definite parity, it follows that the resulting functions
f(x̂) and g(x̂) have flexibility to achieve a wide class
of functions on x̂ in the interval [−π

κ ,
π
κ ] that admit at

most a degree-d Fourier expansion, as in Eq. (9a) and
Eq. (9b). Note that the numerical and experimental
realization of such conditional displacements in Ref. [41]
for universal control of oscillators provides an example
of the expressivity of such a bosonic QSP construction.
The ability to obtain such nonlinear transformations on
oscillator quadrature operators forms the basis of the
QSP interferometry, as we will discuss next.

|0⟩

QSPκ

eiθ0σx

Dc(iκ/
√
2)

eiθjσx

=

|0⟩osc




FIG. 2. A bosonic QSP circuit composed of single-qubit
rotations and controlled displacement operations, where the
form of Dc(iκ/

√
2) is given in Eq. (2) . The gates inside the

bracket are repeated d times for different θj (j = 1, 2, · · · , d)
in order to obtain a degree-d Laurent polynomial.

B. QSP Interferometry

Building on the ability to perform polynomial
transformations on a bosonic oscillator’s quadrature
operators using QSP in Sec. III A and Theorem 2, we
construct a QSP interferometry (QSPI) protocol in this
section by combining two bosonic QSP sequences.
A QSP interferometry protocol is defined as follows:

Definition 2 (Degree-d Quantum Signal Processing
Interferometry (d-QSPI)). Given an underlying bosonic
signal unitary Sβ = eihβ(x̂,p̂), where hβ(x̂, p̂) is a finite-
degree Hermitian polynomial of the quadrature operators
x̂, p̂ parameterized by β ∈ R, a degree-d quantum signal
processing interferometry (d-QSPI) protocol for Sβ is

defined as the protocol in Fig. 1c, or Q−1

θ⃗
(ω)SβQθ⃗(ω),

where Qθ⃗(ω) is given by Eq. (8). Furthermore, we define
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the joint qubit-oscillator state created by Qθ⃗(ω) as the

QSPI sensing state |Q̃⟩ = Qθ⃗(ω) |↓⟩ ⊗ |0⟩osc.
It is readily recognized that the QSPI protocol

described in Definition 2 is a simple generalization of
the usual cat-state interferometry protocol, where the
cat-state preparation is replaced by an arbitrary bosonic
QSP transformation. Each d-QSPI protocol is entirely

characterized by the angle sequence θ⃗.
As an interferometer, the unitary operation realized

by a d-QSPI must be a linear combination of many
elementary unitaries, where the interference among them
performs some desired quantum sensing task. To make
the interferometry aspect of QSPI more vivid and to
reveal how individual unitaries (or “paths”) interfere, it
is useful to identify what such elementary unitaries look
like in QSPI. Because each matrix element of the bosonic
QSP constructed in Eq. (8) is a linear combination of ωn

for different n ∈ [−d, d], we define a QSPI elementary
transformation on the signal Sβ under the basis ωn:

Definition 3 (QSPI Elementary Transformation). An
elementary QSPI transformation Sβ,nm(x̂, p̂) on Sβ is
defined as follows:

Sβ,nm(x̂, p̂) := ω−nSβω
m, (12)

for some ω = e−ih(x̂,p̂) acting on a bosonic mode and for
integers n,m.

From a basis-set-expansion point of view, Eq. (12)
is equivalent to expanding the unknown operator Sβ

under the basis set {ωn}, where Sβ,nm(x̂, p̂) is simply the
resulting matrix element (despite its infinite-dimensional
nature). In the special case of ω = eiκx̂, Eq. (12)
can be viewed as a plane-wave expansion of Sβ for
a set of discrete reduced momenta nk for integer n,
which is similar to the k-point sampling technique in
the numerical study of periodic solid-state systems [42],
where k determines the low-energy cutoff, while the
upper limit of n dictates the high-energy cutoff. We
will see in the following that this high-energy cutoff is
directly related to the QSP degree d that is being used
in our construction.

With the elementary transformation defined, we are
now ready to present the QSPI transformation theory
that describes how QSPI acts as an interferometer:

Theorem 3 (QSP Interferometry Theorem). A d-QSPI
protocol for a bosonic signal unitary Sβ performs a
transformation to Sβ such that the resulting unitary is
a linear combination of d2 elementary transformations
Sβ,nm(x̂, p̂) as defined in Def. 3

Q−1

θ⃗
(ω)SβQθ⃗(ω) =

d∑
n,m=−d

CnmSβ,nm(x̂, p̂), (13)

where Cnm is a complex coefficient matrix defined from
the original QSP coefficients by

Cnm =

[
fnfm + g−ng−m i(fngm − g−nf−m)
i(f−ng−m − gnfm) gngmf−nf−m

]
, (14)

which serves as a complex weight to its associated
elementary transformation Sβ,nm in order to produce the
desired interference.

The proof of the theorem follows by direct
multiplication of the left-hand side of Eq. (13).
The right-hand side of Eq. (13) is a sum of d2 terms,

each weighted by a complex coefficient matrix Cnm,
as defined in Eq. (14); this readily reveals that the
resulting unitary of a d-QSPI protocol is essentially a
giant interferometer of d2 elementary components. Note
that each element of Cnm is always quadratic in terms
of f and g (either a product of two f or two g with
different subscripts); this is simply a consequence of the

fact that the QSP sensing state |Q̃⟩ prepared in Fig. 1c
is perturbed by Sβ before interfering with itself. In this
fashion, the original QSP coefficients fn, gn can be tuned
such that the desired interference pattern is produced
by the protocol for any quantum sensing purpose. Note
that there is no approximation, such as truncating the
dimension of the infinite dimensional oscillators, in our
formalism, since we explicitly work with the oscillator
quadrature operators, and the physical regularization of
the infinite dimensional transformation is provided by a
finite energy initial state (for example, a vacuum state).
Theorem 3 characterizes at the operator level how

QSPI works, but it is not clear what or how much
information can be extracted from the entire protocol
via measurement. We discuss the measurement aspect in
the following.
Just as in any interferometry protocol, we are

interested in extracting information about Sβ by
performing some measurement after the protocol, where
the measurement outcome contains information about
the parameter β. It is possible to measure oscillators
directly using homodyne/heterodyne detection or by
performing a photon-number-resolved measurement.
Such measurements will often provide local information
on the phase-space distribution of the oscillator wave
function. Alternatively, it is much easier (and typically
faster) to measure the ancilla qubit directly. Such
a qubit measurement implies a partial trace over the
bosonic quadrature operator and therefore will provide
useful global information about the oscillator. Extracting
such global information is crucial to performing decision-
making regarding the underlying signal parameter β, as
we will see in Sec. IVA. For the ease of discussion, we
define the QSPI response function as follows:

Definition 4 (QSPI Response Function). A QSPI
response function is defined as the probability
distribution over the signal parameter β after a
projective measurement on the ancilla qubit as
P(β) = || ⟨ϕ1|Q−1

θ⃗
(ω)SβQθ⃗(ω) |ϕ0⟩ |0⟩osc ||

2, where

|ϕ0⟩ and |ϕ1⟩ are the initial and final state of the ancilla
qubit and the oscillator is assumed to start from vacuum
|0⟩osc.
QSPI response functions, or simply the response

functions, as defined in Definition 4, characterize the
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complicated interference pattern between two oscillator
states that are perturbed by Sβ . The signature of
such interference is cast onto the qubit measurement
probability. In our case, the unitary channel that we
wish to distinguish is a displacement of the oscillator
perpendicular to Wz’s displacement direction. The
effect of the displacing signal Sβ can be understood as

convolving the QSP sensing state |Q̃⟩ with a shifted
version of itself. Thus, for an optimal choice of the
QSP polynomial, we expect to be sensitive to a certain
range of displacements. This protocol takes Ramsey
interferometry protocols as in [10, 15] as inspiration. In
fact, Eq. (5) in Sec. II B can be viewed as a simple
response function for cat-state sensing, since it can be
realized by a degree-1 QSPI protocol, as we will see in
the next section.

C. QSPI Protocols for Displacement Sensing

We will examine the outcome for the qubit state in
our generalized QSP sensing protocol for displacement
sensing in Sec. III C 1, and use a degree-1 case as an
example to connect to the cat state sensing protocol in
Sec. III C 2.

1. General Theory of QSPI Displacement Sensing

We shall drop θ⃗ subscripts from Q from here on for
simplicity. The sensing sequence, also from Fig. 1c, is
given by:

U(β, ω) = Q−1(ω)SβQ(ω), (15)

where Q−1(ω) = Q†(1/ω). Using Eq. (3), we may rewrite
Eq. (15) as

U(β, ω) = Q−1(ω)SβQ(ω) = SβQ
†(1/ω′)Q(ω), (16)

where

ω′ = ωe−iκβ = eiκ(x̂−β). (17)

The right-hand side of Eq. (16) reveals a key insight:
the total QSPI protocol reduces to a product of
Q†(1/ω′)Q(ω) (up to an irrelevant global phase Sβ),
which is a QSP sequence interfering with a shifted
version of itself ω → ω′ by a constant phase e−iκβ , as
defined in Eq. (17). It is this β-dependent shift that
allows the extraction of useful information on β from the
interferometry.

In order to find the response function for the
probability of measuring the qubit in the ground state
after the sensing protocol, we must integrate over the
probability distribution in phase space. Let us denote
the upper left matrix element of U as U00 = eiβp̂

[
f(x̂ −

β)f(−x̂) + g(x̂ − β)g(−x̂)
]
, then the measurement

probability of the qubit being at state |↓⟩ is

P(M =↓ |β)
= || ⟨↓|Q−1SQ |↓⟩ |0⟩osc ||

2

= ⟨0|osc(U00)
†U00 |0⟩osc

=

∫ ∞

−∞
dx |[f(−x+ β)f(x) + g(x− β)g(−x)]ψ0(x)|2 .

(18)

where ψ0(x) = π−1/4e−x2/2 is the vacuum state of
the oscillator, and we have used real numbers x as
the argument of f(·) and g(·) since everything has
been written under the position representation. Thus,
P(M =↓ |β) is a function of our signal parameter β and
the original QSP phase angles. We may now tailor the
shape of the QSP Laurent polynomial such that the qubit
response P(M =↓ |β) scales optimally versus β.

Using the Laurent polynomial expressions from
Eq. (9a) and Eq. (9b) and explicitly evaluating the
integration with respect to x, we can alternatively write
Eq. (18) as a series sum

P(M =↓ |β) =
d∑

s=−d

csv(β)
s (19)

for v(β) = ei(2κ)β and cs ∈ R being a function of κ

cs =

d∑
n,n′,r=−d

(fnfn′ + gngn′)

× (fn+2sfn′+2r + gn+2sgn′+2r)e
−κ2(r−s)2 (20)

where n, n′ are either all odd or all even depending on the
parity of d. It follows that the response function of the
qubit P(M =↓ |β) is a degree-d Laurent polynomial with
respect to the new “signal” operator v(β, κ) = ei(2κ)β .
See Appendix B for a proof.

FIG. 3. Pictorial illustration of how in the bosonic QSP
interferometric protocol, the qubit measurement enacts a
duality between a polynomial transformation on the bosonic
quadrature operators and a polynomial transformation on the
sensing parameter β via QSPI.

Therefore, apart from parity and normalization
constraints, we may design the qubit response P(M =↓
|β) by choosing fn and gn such that we approach
the desired Fourier series of a function of β. This
relationship also reveals an interesting duality between
the QSP polynomial transformation on phase space
quadrature and the polynomial transformation on the
signal parameter β in the response function, which is
highlighted in Fig. 3 and summarized as Theorem 4.
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Theorem 4 (QSPI for Displacement Sensing). Given a
degree-d QSPI protocol with the block-encoded quadrature
operator ŵ = eiκx̂ (periodic with a period of [−π

κ ,
π
κ ]

with respect to x), a degree-d response function P(v) :=∑
s csv

s, with v = ei(2κ)β as its argument, is well-defined
where β ∈ [− π

2κ ,
π
2κ ]. Conversely, given a degree-d real

Laurent polynomial transformation (defined in Eq. (19)
with cs as its coefficients) on v = ei(2κ)β where β ∈
[− π

2κ ,
π
2κ ] as the desired response function that satisfies

the following necessary conditions,

d∑
s=−d

cs = 1, cs = c−s, (21a)

0 ≤
∑
s

csv(β)
s ≤ 1, (21b)

there exists a d-QSPI protocol as in Fig. 1c that realizes
the desired response function.

We will now sketch a proof of the above theorem. From
[48], we know for a given QSPI protocol characterized

by θ⃗ that f(x) and g(x) are well-defined, and thus the
forward direction of Theorem 4 is trivial.

On the other hand, it is in general challenging to
provide sufficient conditions for response functions such
that they can be realized by the QSPI protocol using a

set of phase angles θ⃗. Here for the reverse direction of
Theorem 4, we resort to only necessary conditions on the
response function.

Because the response function is necessarily a
probability on the qubit and involves a integral over the
bosonic coordinates, there are additional constraints on
the response function. First, from the response function’s
relevant parity and normalization constraints on cs as
defined in Eq. (19), Eq. (21a) can be derived. Secondly,
beyond the parity and normalization constraints, we
must also impose an additional constraint on possible
sets of cs due to the response function being a probability,
which requires Eq. (21b) to be satisfied for all β ∈ R.

Let us make additional remarks on the reverse
direction of Theorem 4. The reason that it is challenging
to ascertain a set of sufficient conditions on the response
function is due to the nonlinear transformation of F,G in
Eq. (18). Inverting the system of polynomial equations in
Eq. (20), even in the large κ limit where decay coefficients
vanish, appears analytically intractable. From our
construction in Eq. (9), it can be inductively shown that
f−d = gd = 0, and from [48], F (ω) determines G(ω) up to
ω 7→ 1/ω. Thus, for fixed κ, we may reduce Eq. (20) to a
system of d independent equations with d unknowns, but
searching for solution sets of such polynomial equations
is difficult and often infeasible analytically.

2. Example: Cat State Sensing

For the degree d = 1 case, and {θ0, θ1} as the QSP
phase angles, the QSPI response function is

P(M =↓ |β) = c0 + c1v + c−1v
−1 (22)

where

c0 = cos4(θ0) + sin4(θ0) (23)

c1 = c−1 = cos2(θ0) sin
2(θ0). (24)

Evidently, this is a degree-1 Laurent polynomial of the
argument v = ei(2κ)β , where all of the polynomial
coefficients are real. Also, we note that the measurement
probability is independent of θ1 (or, in general, θd for
a d-QSPI protocol) per the construction. Furthermore,
by choosing θ0 = π/4, we recover exactly the cat state
sensing protocol with P(M =↓ |β) = cos2(κβ). Thus,
the cat state sensing protocol is indeed a special case of
a 1-QSPI protocol!

IV. BINARY DECISION-MAKING USING QSPI

Now, we have established the QSPI protocol and its
response function as a polynomial transformation of
the signal. To demonstrate its potential for general
sensing tasks, we derive an explicit expression for the
response function for a binary decision problem on
the displacement parameter in Sec. IVA and analyze
analytically the decision quality and sensing complexity
in Sec. IVB.

A. Binary decision for displacement sensing

For a classical binary decision using measurement of
a single qubit, we want the QSPI response function to
be either 1 or 0 depending on the value of the signal
displacement relative to βth. In particular, one such
target qubit response function is the step function

Pideal(β) =

{
1, 0 ≤ |β| < βth
0, βth < |β| ≤ π

2κ .
(25)

If such an ideal qubit response function is realized,
then the binary decision sensing protocol has no error.
However, in practice, only a finite-degree polynomial
approximation to this function is available and lead to
decision errors. In the following, we give basic definitions
to quantify the decision errors.
For ease of discussion, Fig. 4 plots the ideal response

function (red) in contrast to a typical polynomial
approximation generated by the QSPI protocol (black)
as a function of the underlying displacement β. The
approximated response function features a steep yet finite
slope centered about βth. There are usually some small
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oscillatory patterns for small β and for βth < |β| < π
2κ .

Deviations of Papprox(β) from Pideal(β) across the entire
range of [− π

2κ ,
π
2κ ] quantify the overall probability of

making the wrong decision. We define the following
quantity as decision error density :

perr(βth, κ) =
κ

π

∫ π
2κ

− π
2κ

|Papprox(β)− Pideal(β)| dβ

= perr,FN(βth) + perr,FP(βth). (26)

This quantity can be split into two contributions
according to βth as follows:

perr,FN(βth) =
2κ

π

∫ βth

0

(1− Papprox(β)) dβ, (27a)

perr,FP(βth) =
2κ

π

∫ π/2κ

βth

Papprox(β)dβ. (27b)

The former, perr,FN(βth), defined in Eq. (27a), is the
false-negative (FN) error (also called Type-II error in
hypothesis testing) and is indicated by the grey region in
Fig. 4, while the latter, perr,FP(βth), defined in Eq. (27b),
is the false-positive (FP) error (Type-I error) and is
highlighted in orange in Fig. 4 [51]. Our goal in designing
the response function is to find QSP phase angles that
minimize the total decision error in Eq. (26).

FIG. 4. Schematic of erroneous decision making probability
(from the response function) as the difference between
the ideal response function (solid red) and a polynomial
approximated response function (solid black). For an event
defined as “the displacement is below threshold βth”, the
integrated erroneous probability is composed of two parts: i)
missing the event while it actually happened (false-negative,
FN, Type-II error, grey-shaded area), ii) reporting the event
when it did not happen (false-positive, FP, Type-I error,
orange-shaded area). Note that the effective detection signal
range is [− π

2κ
, π
2κ

].

Substituting Eq. (19) into Eq. (26), the error
probability can be written explicitly as

perr(βth, κ) =

d∑
s=−d

csHs(βth, κ), (28)

where we have defined

Hs(βth, κ) =
2κβth
π

+ sinc (πs)− 4κβth
π

sinc (2κsβth)

(29)

as a function of (βth, κ), and the definition of cs is given
in Eq. (20). Eq. (28) is the central metric for the binary
decision problem in displacement sensing.
Additionally, note that κ and βth always appear

together in Eq. (29) as a product, which suggests there is
a scale-invariance in the definition of Hs in the sense that
the displacement length scale can be measured in units
of 1/κ and only this relative length scale with respect
to 1/κ is meaningful. Toward this end, we introduce a
dimensionless parameter η to quantify βth = η π

κ . It is
evident that the dynamic range for the signal β will be
η ∈ [−0.5, 0.5], as is suggested by the horizontal axis of
Fig. 4. However, the dependence of the coefficients cs
on κ in Eq. (B8) means perr is still κ-dependent which
in turn suggests the optimal sensing QSPI phase angles
depend on κ.

1. Limitation of Cat State for Decision Making

As we have seen in Sec. III C 2 and in Fig. 1b, the
cat-state sensing protocol corresponds to a degree d =
1 QSPI. It has also been shown in Eq. (6) in Sec. II B
that the cat state sensing protocol achieves the celebrated
Heisenberg limit sensing for parameter estimation. In
this section, we will characterize the performance of cat-
state sensing protocol for decision-making and reveal its
limitations in this regard.
For degree d = 1 QSPI, the integrated probability

of making the wrong decision per unit signal can be
calculated as

perr =
1

4π

[
sin(2βthκ− 4θ0) + sin(2βthκ+ 4θ0) (30)

+ (π − 4βthκ) cos(4θ0)− 4βthκ− 2 sin(2βthκ) + 3π
]
.

(31)

We would like to minimize perr overall by choosing θ0
appropriately. The global minimum is found to be the
following when θ0 = π/4 (regardless of βth and κ):

perr|θ0=π
4
=

1

2
− sin(2κβth)

π
. (32)

On the other hand, supposing that we perform no
rotation on the qubit, or θ0 = 0, we obtain P(M =↓
|β) = 1, which gives

perr|θ0=0 = 1− 2κβth
π

. (33)

This makes sense because this scenario is equivalent to
making a decision that the displacement is always below
βth, and therefore there is only false positive error and



11

FIG. 5. The probability of making wrong decision versus the
decision threshold βth. Data shown for a binary decision of
displacement sensing using degree-1 bosonic QSP with κ = 1,
comparing the best (θ0 = π/4, red circle) and the naive (θ0 =
0, black star) sensing protocol.

the error probability should decrease as βth is increased.
Moreover, when βth = π

2κ , which is on the boundary of
the sensing range, perr drops to zero.

A comparison of the scaling of perr versus βth between
the best decision θ0 = π/4 and the ignorant decision
θ0 = 0 is shown in Fig. 5. It can be seen that the
optimal sensing strategy significantly reduces perr when
βth < β∗

th, while it performs worse than the näıve guess
for βth > β∗

th where β∗
th = χ

2κ for χ being the solution
to the transcendental equation π

2 − x + sin(x) = 0.
The optimal sensing protocol works best for βth = π

4κ ,

where it gives perr = 1
2 − 1

π . This simple example
also demonstrates the non-trivial complexity of decision
problems even for the most simple decision problems.

The above analysis also reveals that the minimum perr
achieved by the cat-state sensing protocol is always a
constant regardless of the value of the displacement κ or
the size of the cat state for a threshold βth = π

4κ . This
behavior is in drastic contrast with parameter estimation
tasks, where a larger cat state will have finer interference
fringes in phase space and therefore achieve Heisenberg
limit estimation accuracy for very small displacements
(Eq. (6) of Sec. II B). An intuitive reason why decision
making with a larger cat-state does not help is that the
integration in Eq. (26) smears out the local information
in the oscillator wave function (e.g., the fine interference
fringes), meaning that globally, a larger cat-state behaves
the same as a smaller cat-state for the binary decision.

B. Algorithmic Complexity for Binary Decision

Given the definition of the decision error density
perr(βth, κ), in this section, we would like to understand
some fundamental limits on how perr(βth) scales with
the degree of the QSP. This determines the algorithmic
complexity of making a high-quality binary decision using
a QSPI protocol.
To do this, we first construct a composite function

that exactly reproduces Pideal(β) (red trace in Fig. 4)
in the relevant sensing range of [− π

2κ ,
π
2κ ]. In particular,

consider

P sign,sin
ideal (β) =

sign [sin(κ(βth − β))] + sign [sin(κ(βth + β))]

2
,

(34)

where sign(·) is the sign function. We use the superscript
sign,sin to distinguish the current construction from other
possible constructions for Pideal(β).
With this, it can be shown (Appendix D) that to

achieve a target faulty decision probability perr, the
required QSP polynomial degree d to approximate
P sign,sin
ideal (β) must have

d ∝ 1

κperr
log

(
1

κperr

)
. (35)

For small perr, log
(

1
perr

)
≪ 1

perr
. Therefore, the total

faulty decision probability can be solved from Eq. (35)

perr ∝
1

κd
log(d). (36)

Recall that in a standard parameter estimation task,
Heisenberg-limit scaling is defined when the standard
deviation for estimating the underlying parameter scales
as 1/t where t is the total time for the sensing protocol
(also see discussions in Sec. II B). Here for our case
of binary decision making, analogous to parameter
estimation, Eq. (36) suggests that our QSPI protocol
can achieve a similar Heisenberg-limit scaling where the
probability of making the wrong decision decreases as
1/d (up to a logarithmic factor of log(d)) where d is
proportional to the runtime of the sensing protocol. More
strictly speaking, the appearance of the log(d) factor in
Eq. (36) will make the actual scaling slightly worse than
the Heisenberg limit, as is corroborated by numerical
evidence in Sec. VI.

V. PARAMETER ESTIMATION FROM
QUANTUM DECISIONS

Among general quantum sensing tasks in addition to
decision making, another important class of problems is
to estimate a parameter (or multiple parameters) up to
a given precision. In Sec. IV, it has been shown that
Heisenberg-limit scaling can be achieved in determining
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whether a displacement signal is below or above a
given threshold in the single-sample limit. One natural
question is whether such decision making protocol can
be combined with classical search or majority voting
techniques to efficiently estimate a given displacement
parameter β to high precision ϵ.
In this section, we show that this is possible by

repeatedly querying the binary decision protocol in
Sec. IVA. In particular, Sec. VA presents a naive
classical binary search strategy with a finite success
probability. Sec. VB then describes a way to
exponentially suppress the failure probability using
majority voting.

A. Naive Classical Binary Search Protocol

Suppose that we have a displacement channel that
results in displacement by some unknown β ∈ [0, R],
we would like to know the value of β within error ϵ
using the quantum decision protocol in previous sections.
How long (in terms of QSP degree and queries to the
displacement signal) will it take?

We may approach this task by a naive binary search
method, which subdivides the search space each step
by performing a binary decision using an approximate
threshold function in Sec. IVA, to determine whether β is
above or below the threshold. This process may continue
with a different threshold each time until finally we pin
down the value of β. Obviously, if a perfect threshold
function (red trace in Fig. 4) is provided each time, this
reduces to a purely classical search problem, and it is
known that for N total bisections, we can determine β
to a precision of δ = R/2N . Therefore, to achieve fixed
accuracy δ on β, the required number of queries to the
perfect threshold function will be

Nquery,ideal = log2(R/δ), (37)

which demonstrates exponentially increased accuracy as
the number of queries to the perfect threshold function
increases. The entire protocol will be deterministic with
unity success probability.

However in practice, due to the polynomial
approximation to the ideal threshold function, there will
be a non-zero probability of making the wrong decision
at each step. Therefore, the overall binary search will
have a finite failure probability. Moreover, the finite
width in the falling edge of the qubit response function
will necessarily impose a fundamental limit on how
accurate the binary search can continue for given fixed
QSP degree d.
To perform the binary search, the first step is to choose

the relevant κ value for the controlled-displacement
operator in QSP to set the upper bound on the period
of the response function to at least R. Thus, we choose
κ = π/2R. The position of the threshold can be chosen
for the j-th binary search to be βth,j = R/2j . Recall
that the width of the falling edge of the qubit response

function is κ ≈ perr, which means we can at most
achieve an accuracy of δ ≈ κ ≈ perr, before subsequent
thresholds lie within the falling edge of the current qubit
response function (i.e., the decision protocol will become
a parameter estimation problem).
Combining Eq. (37) and Eq. (36), this sets a limit

on the total number of binary decision search one may
perform

Nquery,max ≈ log2(κdR/ log(d)), (38)

before the falling edge’s width prevents us from making
a sharp decision.
Moreover, since each binary search has a failure

probability of perr, the overall failure probability of the
binary search protocol for a given degree-d will be

pfailure = perrNquery,max ≈ log(d)

κd
log2

(
κdR

log(d)

)
. (39)

Therefore, a d-QSPI sensing protocol can at most
estimate the displacement β to precision δ = 1

κd log(d)
with Nquery,max queries to the displacement signal with
a limited success probability of 1 − pfailure, where
Nquery,max and pfailure are given by Eq. (38) and Eq. (39),
respectively. After this, one can of course make further
queries to reduce the uncertainty of the underlying
parameter β, but this is more akin to a parameter
estimation instead of a decision protocol.

B. Boost Estimation Success Probability via
Majority Voting

The above search protocol has a failure probability
that decreases ∼ 1/d as the QSP degree increases. In
this section, we show that the failure probability can
be suppressed exponentially as the number of samples
increases.
Consider modification of the above protocol by

repeating the binary decisionM times during each round
of search, and then using majority vote to determine
the decision outcome in each search. From binomial
distribution, the total probability of making the wrong
decision for each round of the binary search is

perr,M ∝
M∑

m=M/2+1

(
M

m

)
pmerr(1− perr)

M−m

≈ M !

(M/2)!(M/2)!
pM/2
err (40)

for small perr (or large d). Following similar analysis, the
overall failure probability of the entire binary search will
be reduced to

pfailure,M = perr,MNquery,max

≈
(
4 log(d)

κd

)M/2

log2

(
κdR

log(d)

)
= O(d−M/2)

(41)
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which is an exponential suppression as compared to the
1/d scaling in the case of single-sample decision, at
the expense of a total of Nquery,maxM queries to the
displacement signal.

VI. NUMERICAL RESULTS AND
DISCUSSIONS

Building on the fundamental theory and analytical
analysis of the quantum signal processing interferometry,
in this section we provide numerical evidence to support
our analytical findings for binary decision making on
displacement channels and to demonstrate the advantage
of the QSPI for quantum sensing tasks.

A key task to construct the desired QSPI protocol

is to find the corresponding QSPI phase angles θ⃗ as
in Definition 2. For a given decision problem, the
existing analytic angle-finding algorithms for QSP [52,
53] cannot be directly applied in QSPI to realize the
optimal response function due to reasons mentioned in
Sec. III C 1. In this section, we resort to numerical
optimization algorithms, which are capable of carrying
out such multi-variable approximate optimization tasks
on a reasonable timescale to find the QSPI angles.
See Ref. [54] for the source code and related data
accompanying this work. The rest of this section
is organized as follows. Sec. VIA presents the
response function from our numerical optimization, while
Sec. VIB further exhibits the favorable Heisenberg-limit
scaling for the error decision probability from these
numerical solutions. In Sec. VIC, we discuss features
of the Wigner function of the optimal sensing states |Q̃⟩
as defined in Definition 2.

A. QSPI Phases for Binary Decisions

As discussed, we seek a QSPI protocol that generates
a response function approximating a step function with
sharp transitions at ±βth, as given in Eq. (25). We
approximate the ideal response function via machine
optimization of the phases θj in Eq. (8) to minimize
the objective function perr in Eq. (26) and Eq. (28) for
different degrees d. We use the standard Nelder-Mead
optimization algorithm as implemented in Python in the
scipy optimization package with convergence defined to
take place whenever either perr or every QSPI rotation

angle in θ⃗ changes by at most 10−5 radians in a single
step of optimization.

We compute the corresponding response function
based on converged optimization results, and plot this
as a function of β in Subfig. 6(a) for degrees d = 1, 5,
9, and 13, with Subfigs. 6(b) and 6(c) zoomed in for
the small and large β regions, respectively. As shown
in the figure, when d = 1, the response function simply
takes the shape of a cos(·) function. As the degree of
the QSPI protocol increases, not only does the slope of

the falling edge become steeper, but also, more ripples
are observed in the wings, as highlighted in panels (b)
and (c) of Fig. 6. These ripples are a common feature for
finite-degree polynomial approximations to discontinuous
functions.
Furthermore, a closer observation of the response

function reveals that a d-QSPI protocol has precisely
(d − 1) local minima or maxima of its corresponding
response function in the interval [0, π

2κ ). This is
expected because a degree-d polynomial on β has at
most (d − 1) turning points. From a signal processing
perspective, such qubit response functions serve as low-
pass filters on the signal parameter β [55]. We note
that filters have been widely used in classical decision-
making [56], where filter functions (or impulse response)
of the desired shape can be implemented as infinitely
smooth analytical functions (such as the Butterworth or
Chebyshev filters) or as finite-degree polynomials. The
former class of filters are often called infinite impulse
response because an exact realization of the response
would require an infinite order polynomial, while the
later are named finite impulse response. Our QSPI
protocol can therefore be viewed as a quantum circuit
realization of a finite impulse response (finite-degree
filter) on a classical parameter β which parameterizes
a quantum process (the underlying displacement signal).
There is efficient classical algorithm, the Parks-McClellan
algorithm, that designs optimal finite-order polynomial
filters [25]. It is interesting to ask whether there exist
a quantum version of the Parks-McClellan algorithm for
filter design. Another question is to what extent can our
QSPI protocol realize classical filters of certain degree.
Sufficient conditions on Theorem 4 will shed more light
on these questions.

B. Heisenberg-limit Scaling in Decision Quality

To analyze our results and compare to the traditional
displacement sensing approaches, we plot the decision
error of the QSPI protocol versus its degree d on a
log-log plot as shown in Fig 7. This plot illuminates
an interesting relationship between the QSPI protocol
degree and the associated response function. From the
figure, we can see that the numerical data points can
be fitted by a linear black dashed line, demonstrating a
power-law trend for perr vs. degree d. The fitting reveals
a slope of roughly α = −0.82± 0.02 which is close to the
HL-like scaling as defined in Definition 1. This power-law
fit does not precisely fit all of the points, and it exhibits
a parity-dependence with respect to the probability
of error. The slope is slightly worse than the exact
Heisenberg-limit (green dotted line), while still clearly
outperforming the standard quantum limit, a deficiency
that is consistent with the additional logarithmic factor
log(d), as explained in Eq. (36) of Sec. IVB. To make
a more direct comparison, we also fit all data points for
d ≥ 5 using the analytical scaling in Eq. (36) (blue dashed
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FIG. 6. (a) Example response functions for various degrees d
for distinguishing a displacement with βth = 0.25 · π

κ
, where

κ = 1/2048, using QSPI phases from numerical optimization.
(b, c) Magnified plots of the response function shown in (a)
around P(M =↓) = 0 and P(M =↓) = 1, demonstrating that
the response function for a d-QSPI protocol has (d−1) turning
points in the interval [0, π

2κ
).

line). The difference between the analytical expectation
and numerical data is because our analytical scaling is
derived in the large d limit where we assume the major
source of error perr is from the falling edge as seen in Fig.
6 (also see discussion in Appendix D).

One final point is that although we were able to
obtain numerical results and verify them, this brute-force
optimization method does have several clear challenges.
For example, to numerically optimize the sequence of
phases minimizing the loss function (perr), one must
select an initial value for each of the phases as a starting
point. It is possible that a sequence of initial values
in the vicinity of a local minimum is selected and
then the optimization procedure never escapes from the
neighborhood around the local minimum. This problem
becomes especially challenging for longer QSP sequences,
where the search space is likely to contain more local
minima. We attempt to address this difficulty by seeding
with multiple distinct random initial phase sequences and
iterating on only a subset with the least perr. Thus, we

FIG. 7. Log-log scale plot of perr versus the QSPI protocol
degree d (red circles). The best-fit power-law scaling (black
dashed line) has a slope of α = −0.82±0.02, indicating perr ∝
d−0.82±0.02. Best-fit theoretical scaling from Eq. (36) using
data for d ≥ 5 is shown with a blue dashed line. The ∝ 1/d
HL scaling is shown with a green dotted line for comparison.

are able to increase the likelihood that we find a phase
sequence that has not been trapped in a local minimum,
allowing us to discern the optimal scaling of the decision
error with QSPI degree.

C. Wigner Function of Optimal QSPI Sensing
States

Given the numerically optimized phases for optimal
QSPI sensing states, we may now visualize the resulting
states to gain intuition about why their properties allow
them to outperform cat states for our decision problems,
as we describe in this section.
Although we learned the QSPI phases for the small

κ = 1/2048 in order to best decouple the cs coefficients
and hence facilitate the optimization of the phases, bear
in mind the discussion of the coupling of κ and β in
Eq. (B8) and realize that we can adjust our choice of κ
and the corresponding β with only minimal fine-tuning of
the phases learned for the original value of κ. As such, for
clearer visualization of low-degree states on the Wigner
plots, we increase the scale of our problem by setting
κ = 0.15

√
2 and setting βth = π

4κ = 5π
3
√
2
. We use the

phase sequence learned for κ = 1
2048 as our initial phase

sequence and resume optimization until convergence for
the new value of κ. This change to κ results in minimal
change to the QSPI phases during the optimization, with
the majority of them differing by less than 1% relative
to their original values. The Wigner plots for F and G
(Eq. (9)) for the newly optimized states resulting from

these d-QSPI protocols with κ = 0.15
√
2 are shown for

d = 5, 9, and 13 in Subfigs. 8(d) – 8(i) in the lower half
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of Fig. 8.

To compare these QSPI states with cat states, we plot
F (Eq. (9a)) for cat states constructed with the same
number d−1 of displacements by κ in Subfigs. 8(a) – 8(c)
in the upper panel of Fig. 8. We see immediately that
the interference patterns (regions with large contrast and
Wigner negativity) for the cat state and QSPI state of
same degree d differ significantly. The cat states display
interference fringes from their two displaced coherent
states that oscillate with a frequency of

√
2dκ/π along the

x-axis. Thus, cat states corresponding to higher degree
d have higher-frequency fringes; this is what makes
cat states effective sensors of very small displacements
perpendicular to the coherent-state displacement in
parameter-estimation protocols [15] but not optimal for
making decisions about displacement. In fact, cat states
have a constant probability of error perr across all d for a
given βth and κ, as explained in Sec. IVA1. In contrast,
we have demonstrated both analytically and numerically
that the QSPI sensing states can be designed to minimize
the probability of error as the degree d is increased.

The physical intuition for this improved decision-
making of the QSPI states stems from the lower-
frequency features shown in the Wigner contrast plot.
The spacing between sharp-Wigner-contrast features
which appear consistently in the upper half of plots
in Subfigs. 8(d) and 8(f) around (x ≈ ±1, p ≈ 1)
indicates the placement of sharp thresholds in the
response function. This is why the cat-state response
function places sharp thresholds with frequency dκ/π.
In comparison, for general QSPI states, the interplay
between asymmetric F and G is more complicated to
analyze than for the F and G of cat states, but as
we see in Fig. 8, the spacings between sharp Wigner
features shown in Subfigs. 8(d) and 8(e) remain larger
than those of the cat states shown in Subfigs. 8(a) and
8(b), respectively. Notice that the Wigner extent is also
smaller for QSPI states as compared to cat state. This
is because cat states are maximally extended in phase
space for the given energy of the protocol by naively
shifting the wave packet along one direction, while the
QSPI state devotes some of the energy to creating a more
complicated and optimized interference pattern phase
space as compared to the simple sinusoid with Gaussian
envelope that the cat state creates.

Subfigs. 8(g) – 8(i) then depict the final oscillator
state after performing the entire QSPI displacement-
sensing protocol with displacements by β = 1

2βth
and β = 3

2βth, conditioned on the qubit being
in the |↓⟩ state. We note from these subfigures
that the quasiprobability distribution exhibits primarily
constructive interference to give a total |↓⟩-measurement
probability of nearly 1 when the QSPI sensing protocol
is applied for a displacement by β = 1

2βth, while the
Wigner quasiprobability distribution exhibits primarily
destructive interference to give a total |↓⟩-measurement
probability of nearly 0 when the QSPI sensing protocol is
applied for a displacement by β = 3

2βth (hence the nearly

Sensing State P(M =↓ |β = 1
2
βth) P(M =↓ |β = 3

2
βth)

Cat State 0.957 0.035
QSPI 5 0.956 0.035
QSPI 9 0.976 0.021
QSPI 13 0.982 0.016

TABLE I. The probability of measuring the qubit in the
|↓⟩ state after applying the entire sensing protocol with
displacements by 1

2
βth (below threshold) and 3

2
βth (above

threshold) using the cat state (independent of degree d) and
the d-QSPI states for d = 5, 9, and 13, where κ = 0.15

√
2

and βth = π
4κ

= 5π

3
√
2
. These values are calculated from a

numerical simulation of the QSPI protocol with a Fock-level
truncation of N = 500 and using a grid with a grid spacing
of 0.2 × 0.2. The numbers in the table are confirmed to
converge to the significant figures with respect to both Fock-
level truncation N and grid spacing by performing the same
calculations with larger N and finer grids.

empty Wigner plots). These behaviors agree with our
theoretical analysis and solve the Main Problem stated
in Sec. II A.
In particular, we also show in Table I the probabilities

of measuring |↓⟩ for the qubit state after performing the
entire protocol with both the d-QSPI sensing states for
d = 5, 9, and 13 and the corresponding cat states for
reference. Note that according to simulation results (and
as predicted in Sec. IVA1), the probability of detection
does not change with degree d for the cat state, so
we provide only one probability. Note also from the
results shown in the table that although the cat state
performs well for sensing a displacement by βth (with

κ = 0.15
√
2 and βth = π

4κ = 5π
3
√
2
), its performance is

already matched with only a 5-QSPI state. Moreover,
while the cat state’s displacement-sensing performance
remains constant with increasing degree d, the d-QSPI
state’s performance improves, so the 9- and 13-QSPI
states outperform the cat state; moreover, performance
of d-QSPI states for this displacement-sensing task will
continue to improve as d increases further.

VII. CONCLUSION

In this paper, we present a general framework for
single-shot quantum sensing using continuous-variable
systems by establishing a theory of quantum signal
processing interferometry. The basics of this construction
are a generalization of QSP to systems with a qubit
coupled to a quantum harmonic oscillator. The
controlled displacement operation between the qubit
and the oscillator forms a natural block-encoding of
the displacement operator on the oscillators, via which
arbitrary polynomial transformations on the oscillator’s
quadrature operator can be efficiently implemented. The
flexibility of QSP provides the basis for our algorithmic
QSPI sensing protocol. A measurement on the qubit
induces a qubit response function that is a polynomial
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FIG. 8. Wigner plots of F for the cat state (Figs. 8(a), 8(b), and 8(c)), F and G for the optimal QSPI sensing state (Figs. 8(d),
8(e), and 8(f)), and the oscillator state resulting after the entire protocol is applied with displacements of β = 1

2
βth and

β = 3
2
βth conditioned on the qubit being in the |↓⟩ state (Figs. 8(g), 8(h), and 8(i)) with κ = 0.15

√
2 and βth = π

4κ
= 5π

3
√
2

constructed for d = 13, 9, and 5. Note the significant differences between the Wigner plots for the cat states and those for the
QSPI sensing states, which do not closely resemble any known classes of quantum states. While the cat states all appear very
similar but with more distance between their two coherent state parts and more interference fringes at the center as the degree
d increases, the optimal sensing states have a more complex interference pattern for improved decision-making. As expected,
the final oscillator state after the sensing protocol conditioned on the qubit being in the |↓⟩ state represents a probability close
to 1 for a displacement by β = 1

2
βth but a small probability for a displacement by β = 3

2
βth, matching the behavior of the

calculated response functions, shown for κ = 1
2048

in Fig. 6. A symmetrical logarithmic scale, where the scaling is logarithmic
in both the positive and negative directions from a small linearly-scaling range around zero, is used as the color scheme in order
to increase the contrast of finer features of the Wigner quasiprobability distribution.

transformation of the signal parameters that we would
like to sense. By tuning the QSPI phase angles to design
appropriate response functions, useful information about
the signal parameters can be extracted efficiently.

The QSPI sensing protocol is analyzed in detail for a
binary decision problem on a displacement channel with
theoretical bounds on the sensing-circuit and sampling
complexity. These binary decision oracles are then
used to construct a composite protocol for parameter
estimation via classical binary search and majority
vote. Our sensing scheme is applied to determine if a
displacement on the oscillator is greater or smaller than
a certain threshold, and Heisenberg-limited behavior is
derived analytically and observed numerically for this
application.

While we have demonstrated Heisenberg-limited
scaling for a binary decision on a displacement channel,
the sensing protocol can be further improved. One
immediate task is to determine if there exist non-
optimization-based algorithms for finding QSPI phase
angles that achieve a general QSPI response function.

This goal implies the need to find not only necessary
but also sufficient conditions on QSPI for the backward
direction of Theorem 4. Moreover, the sensing protocol
for a single canonical variable of the oscillator can
be generalized to two conjugate canonical variables of
position and momentum simultaneously, allowing for
the realization of quantum sensing in the entirety of
phase space for the oscillator. Due to the Heisenberg
uncertainty principle, tradeoffs between sensitivity in the
position and momentum quadratures may be imposed
using squeezing operations depending on the particular
sensing task. In addition, the sensing power can be
further enhanced by coherently manipulating multiple
bosonic modes [20, 57], which can likely be coupled
together with beamsplitters. In this context, tradeoffs
between available quantum resources, such as space
(number of oscillators) and time (sensing circuit depth),
would be interesting to investigate.

The algorithmic QSPI-based quantum sensing protocol
presented in this work opens many possibilities for useful
applications. For example, bosonic modes appear in
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many physical systems, such as in molecular vibrations
and light-matter interactions under confined conditions.
The displacement-sensing scheme presented here can
be used to sense any chemical environment change in
molecules, as long as the change leads to an effective
displacement operation on molecular vibrations, as in the
case of ro-vibrational coupling [58], or a displacement on
photonic modes, as in polariton chemistry [59, 60]. The
flexibility of designing response functions can also be used
to deal with situations where the underlying signal has
some prior distribution.

We note that the decomposition of composite sensing
tasks, such as parameter estimation, into a series
of decision problems provides ample room for the
incorporation of hybrid quantum-classical algorithms
into the sensing framework. For example, sophisticated
adaptive strategies can be built in to gradually change
the precision and shape of the decision filter and
hence reduce the sensing cost. Lastly, Heisenberg-
limited sensing is prone to quantum noise. It would
be useful to analyze the stability of our QSPI-based
continuous-variable sensing protocol in the presence of
quantum noise [23, 61]. Realistic noise models on
hardware containing bosonic degrees of freedom could be
incorporated as well [62].
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Appendix A: Proof of bosonic QSP Theorem 2

Denote the set of eigenvalues and eigenvectors of the
generator h(x̂, p̂) in Lemma 1 to be λ and |λ⟩ such that

h(x̂, p̂) |λ⟩ = λ |λ⟩ . (A1)

Since h(x̂, p̂) is Hermitian, we have λ ∈ R. Moreover, for
an infinite-dimensional oscillator, {λ} can be inherently
continuous. Furthermore, we assume that {|λ⟩} forms a
(over)complete basis for the oscillator (for example, in
the case of a continuous displacement operator whose
eigenstates are coherent states) for achieving universal
control of the oscillator. However, the bosonic QSP
formalism still works in the subspace expanded by {|λ⟩}.
Now, consider the action of Wz on an arbitrary qubit-

oscillator entangled state, where the oscillator state

is given by 1√
2
(|0⟩ |Ψ0⟩osc + |1⟩ |Ψ1⟩osc). Expand the

oscillator state under the {|λ⟩} basis to find

Wz
1√
2
(|0⟩ |Ψ0⟩osc + |1⟩ |Ψ1⟩osc)

=e−ih(x̂,p̂)σz
1√
2
(|0⟩ |Ψ0⟩osc + |1⟩ |Ψ1⟩osc)

=e−ih(x̂,p̂)σz
1√
2

(
|0⟩
∫
dλc0,λ |λ⟩+ |1⟩

∫
dλc1,λ |λ⟩

)
=

1√
2

(
|0⟩
∫
dλe−iλc0,λ |λ⟩+ |1⟩

∫
dλeiλc1,λ |λ⟩

)
=

∫
dλ |λ⟩ 1√

2

(
|0⟩ e−iλc0,λ + |1⟩ eiλc1,λ

)
=

∫
dλ |λ⟩ ⊗ e−iλσz

[
c0,λ |0⟩+ c1,λ |1⟩√

2

]
. (A2)

Therefore, Wz acts individually on each 2 × 2 subspace
labeled by the eigenvalue λ of h(x̂, p̂) in a similar spirit
to that of qubitization of a finite-dimensional block-
encoding. From Eq. (A2), repeatedly applying Wz and a
single-qubit rotation eiθjσx will result in the application
of QSP to each individual 2× 2 subspace:

eiθdσx

d−1∏
j=0

Wze
iθjσx

1√
2
(|0⟩ |Ψ0⟩osc + |1⟩ |Ψ1⟩osc)

=

∫
dλ |λ⟩ ⊗ eiθdσx

d−1∏
j=0

e−iλσzeiθjσx

[
c0,λ |0⟩+ c1,λ |1⟩√

2

]
.

(A3)

In the 2 × 2 subspace for each λ, the usual
single-qubit QSP theorem applies and can achieve a
Laurent polynomial transformation to the scalar e−iλ.
Performing the integral over all λ, it follows that
the overall sequence in Eq. (8) performs a Laurent
polynomial transformation on e−ih(x̂,p̂), hence proving
Theorem 2.

Appendix B: Proof that the response function is a
polynomial of the sensed signal

We prove in this section that the QSPI response
function, as defined in Eq. (18), is a degree-d polynomial
transformation of the new signal v = ei(2κ)β within a
restricted range [− π

2κ ,
π
2κ ] and the polynomial is real.

Using the Laurent polynomial expressions in Eq. (9)
and explicitly evaluating the integration with respect to
x, we can write Eq. (18) as a series sum

P(M =↓ |β) =
d∑

n,n′,m,m′=−d

An,n′,m,m′ , (B1)

where

An,n′,m,m′ = (fnfn′ + gngn′)(fmfm′ + gmgm′)∗

× e−
1
4κ

2(n−n′−m+m′)2e−iκ(n−m)β . (B2)
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The following property can be verified:

An,n′,m,m′ = A∗
m,m′,n,n′ . (B3)

Therefore, we can rearrange the sum for the QSPI
response function to be

P(M =↓ |β) = 1

2

d∑
n,n′,m,m′=−d

(An,n′,m,m′ +A∗
m,m′,n,n′)

=
1

2

 d∑
n,n′,m,m′=−d

An,n′,m,m′ +

d∑
n,n′,m,m′=−d

A∗
m,m′,n,n′


=

1

2

 d∑
n,n′,m,m′=−d

An,n′,m,m′ +

d∑
n,n′,m,m′=−d

A∗
n,n′,m,m′


=

d∑
n,n′,m,m′=−d

Re{An,n′,m,m′}, (B4)

where we have renamed variables m ↔ n and m′ ↔ n′

from the second line to the third line, and Re{·} denotes
the real part.

Next, we prove that P(M =↓ |β) is a degree-d Laurent
polynomial of v = ei(2κ)β in the range [− π

2κ ,
π
2κ ].

Because fn, gn are each coefficients of Laurent
polynomials from QSP, it follows that fn, gn ̸= 0 only
for even n if d is even, or fn, gn ̸= 0 only for odd n if d
is odd. This means An,n′,m,m′ ̸= 0 only when m,n have
the same parity and m′, n′ have the same parity, which
further suggests the variable substitution

m = n+ 2s, m′ = n′ + 2r, (B5)

where −d ≤ s, r ≤ d. Substituting this back into
Eq. (B2), we have

An,n′,n+2s,n′+2r = (fnfn′ + gngn′)

(fn+2sfn′+2r + gn+2sgn′+2r)

e−κ2(r−s)2ei(2κ)sβ . (B6)

Further, substituting this back into Eq. (B1), we obtain

P(M =↓ |β)

=

d∑
n,n′,s,r=−d

(fnfn′ + gngn′)(fn+2sfn′+2r + gn+2sgn′+2r)

× e−κ2(r−s)2ei(2κ)sβ

=

d∑
s=−d

cs(κ)v
s, (B7)

where v = ei(2κ)β and

cs(κ) =

d∑
n,n′,r=−d

(fnfn′ + gngn′)

(fn+2sfn′+2r + gn+2sgn′+2r)e
−κ2(r−s)2 ,

(B8)

with fn, gn ∈ R, cs ∈ R.
Because the new signal operator v has an effective

momentum of 2κ, this means that P(M =↓ |β) will be
periodic with a reduced period of [− π

2κ ,
π
2κ ]. It follows

that the QSPI response function P(M =↓ |β) is a degree-
d Laurent polynomial in the operator v = ei(2κ)β .

Appendix C: Recursive relationship between the
QSP coefficients

The probability of making the wrong decision can be
efficiently computed classically from the original QSP
phase angles. First, by using the following recursive
relationship, all the QSP coefficients fn, gn can be
computed. Second, the series sum in Eq. (28) can be
evaluated explicitly using the computed fn, gn, without
loss of numerical precision.

f (d+1)
r =


cosϕd+1f

(d)
r−1, r = d, d+ 1

− sinϕd+1g
(d)
r+1, r = −d,−d− 1

cosϕd+1f
(d)
r−1 − sinϕd+1g

(d)
r+1, |r| ≤ (d− 1)

(C1)

g(d+1)
r =


sinϕd+1f

(d)
r−1, r = d, d+ 1

cosϕd+1g
(d)
r+1, r = −d,−d− 1

sinϕd+1f
(d)
r−1 + cosϕd+1g

(d)
r+1, |r| ≤ (d− 1)

(C2)
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Appendix D: Proof of Heisenberg scaling for QSPI
binary decisions

From Fig. 4, the decision error probability can be
approximately written as a sum of two contributions in
the following way

perr ≈ ϵ
(π
κ
− 2σ

)
+
σ

2
, (D1)

where ϵ is the approximation error to an ideal step
function from a polynomial function. The first term in
Eq. (D1) is obtained from such an imperfect polynomial

approximation in the region of [− π
2κ ,

π
2κ ], excluding the

rising and falling edges [βth − σ/2, βth + σ/2] ∪ [−βth −
σ/2,−βth + σ/2]; the second term in Eq. (D1) is from
erroneous decisions when the displacement β lies within
the rising or falling edge.
Rearranging Eq. (D1), this means that the error in the

polynomial approximation to P sign,sin
ideal is

ϵ ≈
perr − σ

2
π
κ − 2σ

. (D2)

From Ref. [36], to achieve an ϵ approximation to the
sign function in regions excluding [−σ/2, σ/2] requires
a polynomial of degree d = γ(ϵ, σ) for

γ(ϵ, σ) := 2 ·

⌈
max

(
e

σ

√
W

(
8

πϵ2

)
W

(
512

e2π

1

ϵ2

)
,
√
2W

(
8
√
2√

πσϵ

√
W

(
8

πϵ2

)))⌉
+ 1, (D3)

where W (·) is the Lambert W function. Assuming
σ = O(perr) and for small perr, substitute Eq. (D2) into

Eq. (D3) and use a Taylor expansion on the Lambert W
function in order to obtain Eq. (35) in the main text.
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