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ABSTRACT: We extend molecular bootstrap embedding to make it
appropriate for implementation on a quantum computer. This enables solution
of the electronic structure problem of a large molecule as an optimization
problem for a composite Lagrangian governing fragments of the total system,
in such a way that fragment solutions can harness the capabilities of quantum
computers. By employing state-of-art quantum subroutines including the
quantum SWAP test and quantum amplitude amplification, we show how a
quadratic speedup can be obtained over the classical algorithm, in principle.
Utilization of quantum computation also allows the algorithm to match�at
little additional computational cost�full density matrices at fragment
boundaries, instead of being limited to 1-RDMs. Current quantum computers
are small, but quantum bootstrap embedding provides a potentially
generalizable strategy for harnessing such small machines through quantum
fragment matching.

1. INTRODUCTION
Determining the ground state of large-scale interacting
Fermionic systems is an important challenge in quantum
chemistry, materials science, and condensed matter physics.
Just as electronic properties of molecules underpin their
chemical reactivity,1−3 phase diagrams of solid state materials
are also determined to a large degree by their ground state
electronic structure.4−6 However, the exact solution to the
time-independent Schrodinger equation of a practical many-
electron system remains a daunting task because the dimension
of the underlying Hilbert space grows exponentially with the
number of orbitals, and the computational resources required
to perform calculations over such a large space can quickly
exceed the capacity of current classical or quantum hardware.

One promising approach to fit a large electronic structure
problem into a limited amount of computational resources is
to break the original system into smaller fragments, where each
fragment can be solved individually from which a solution to
the whole is then obtained.7−9 Efforts along this direction have
successfully led to various embedding schemes that signifi-
cantly expand the complexity of the systems solvable using
classical computational resources, such as density-based
embedding theories,10,11 density-matrix embedding theories
(DMET),12−16 various Green’s function embedding theo-
ries,6,17−21 and the bootstrap embedding theory.22−24 The
essence of such embedding-based methods is to add an
additional external potential to each fragment Hamiltonian and
then iteratively update the potential until some conditions on
certain observables of the system are matched. Nevertheless,
due to the significant cost in solving the fragment Hamiltonian

itself as the fragment size increases, the applicability of such
methods are limited to relatively small fragments, which may
lead to incorrect predictions in systems with long-range
correlations.25 While approximate fragment solvers such as the
coupled-cluster theory or many-body perturbation theory have
greatly enhanced the applicability of such embedding methods
at a reduced cost,26−28 these approximations tend to fail for
strongly correlated systems due to limited treatment of
electron correlation. In addition, because of limitations on
computing k-electron reduced density matrices (k-RDMs for k
> 2), embedding and observable calculations beyond 2-RDM
are difficult in general.

Quantum computers are believed to be promising in tackling
electronic structure problems more efficiently,29 despite that
evidence for an exponential advantage across chemical space
has yet to be found.30 One natural idea to circumvent the
problems of classical eigensolvers is to use a quantum
computer to treat the fragments. By mapping each orbital to
a constant (small) number of qubits, the exponentially large
(in the number of orbitals) Hilbert space of an interacting
Fermionic system can be encoded in only a polynomial
number of qubits and terms. Indeed, quantum eigensolvers
such as the quantum phase estimation (QPE)31 algorithm has
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been proposed to achieve an exponential advantage given a
properly prepared input state32 with nonexponentially small
overlap with the exact ground state. More recently, various
variants of the variational quantum eigensolver (VQE)33−37

have been demonstrated experimentally on NISQ devices to
achieve impressive performance as compared to classical
methods. Moreover, k-RDMs (for any k) can be measured
through quantum eigensolvers38,39 that may circumvent the
difficulty encountered on classical computers. Current
quantum computers are small, but quantum embedding
provides a way to tailor fragment sizes to fit into such small
quantum machines to achieve a solution to the entire problem.

To take the full advantage of these quantum eigensolvers
within the embedding framework,18,40−44 two open questions
immediately arise as a result of the intrinsic nature of quantum
systems. First, the wave function of a quantum system collapses
when measured. This means any measurement of the fragment
wave function is but a statistical sample (akin to Monte Carlo
methods), and many measurements are needed to obtain
statistical averages with sufficiently low uncertainty in order to
achieve a good matching condition for the embedding. Second,
the best way to perform matching between fragments using
results from quantum eigensolvers is not clear, and most likely
a new approach needs to be formulated to match fragments.
Admittedly, it would be straightforward to first estimate the
density matrices by collecting a number of quantum samples
and then use the estimated density matrices to minimize the
cost function as in classical embedding theories.12,22 But this
approach would be very costly especially given the increasing
number of elements in qubit reduced density matrices
(RDMs) that need to be estimated.45 Could there be a
quantum method for matching, as opposed to a statistical
sampling-based classical approach?

We address the two challenges by providing a quantum
coherent matching algorithm and an adaptive sampling
schedule, leading to a quantum bootstrap embedding (QBE)
method based on classical bootstrap embedding.22 Instead of
matching the RDM element-by-element, the quantum
matching algorithm employs a SWAP test46,47 to match the
full RDM between overlapping regions of the fragments in
parallel. Moreover, the quantum amplitude estimation
algorithm48,49 allows an extra quadratic speedup to reach a
target accuracy on estimating the fragment overlap. In
addition, the adaptive sampling changes the number of
samples as the optimization proceeds in order to achieve an
increasingly better matching conditions.

It is important to compare the cost of quantum algorithms
to classical algorithms carefully to claim any quantum
advantage.30 Toward this end, to highlight the advantage of
the new QBE algorithms, we systematically compare their cost
against classical BE algorithms with a biased stochastic
eigensolver (the variational Monte Carlo, VMC) and the
exact solver (full configuration interaction, FCI) as baselines.
Different versions of the QBE algorithms using either QPE or
VQE as eigensolvers with classical or quantum (coherent)
matching algorithms are also compared among themselves for
clarity.

The present work invites a viewpoint of treating quantum
computers as coherent sampling machines which have three
major advantages, as compared to their classical counterparts.
First, the exponentially large Hilbert space provided by a
quantum computer allows a more efficient exact ground state
solver (QPE) than its classical counterpart (exact diagonaliza-

tion). Second, in the case of truncation for seeking
approximate solutions, the abundant Hilbert space of quantum
computers enable more flexible and expressive variational
ansatz than classical computers, leading to more accurate
solutions. Third, the coherent nature of quantum computers
allows sampling to be performed at a later stage, e.g., after
quantum amplitude amplification of matching conditions to
extract just the feedback desired, instead of having to read out
the full state of a system.

The rest of the paper is organized as follows. Section 2
overviews the bootstrap embedding method at a high level and
analyzes its scaling on classical computers, in order to motivate
the need for bootstrap embedding on quantum computers.
This section serves to set the notation and baseline of
comparison for the rest of the paper. Section 3 presents the
theoretical framework of quantum bootstrap embedding in
detail as constraint optimization problems. In section 4, we
give details of the QBE algorithm to solve the optimization
problem. In section 5, we apply our methods to hydrogen
chains under minimal basis where both classical and quantum
simulation results are shown to demonstrate the convergence
and sampling advantage of our QBE method. We conclude the
paper in section 6 with a summary of comparisons between
classical and quantum BE discussed in the paper, as well as
prospects and future directions.

2. IDEAS OF BOOTSTRAP EMBEDDING
The idea of bootstrap embedding (BE) for quantum chemistry
has recently led to a promising path to tackle large-scale
electronic structure problems.22,23,50 In this section, we
establish the terminology and framework that will be used in
the rest of the paper. We first briefly review BE and outline the
main framework of BE for computation on a classical computer
in sections 2.1 and 2.2 for nonchemistry readers, to set up the
notation. We then begin presenting new material by discussing
typical behavior and computational resource requirements for
BE on classical computers in section 2.3, which leads to the
quest for performing BE on a quantum computer in section
2.4.
2.1. Fragmentation and Embedding Hamiltonians.

To provide a foundation for a more concrete exposition of the
bootstrap embedding method, we first establish some rigorous
notation for discussing molecular Hamiltonians and their
associated Hilbert spaces. We will work with the molecular
Hamiltonian under the second quantization formalism.
Specifically, given a particular molecule of interest, define O
= {ϕμ | μ = 1, ..., N} to be an orthonormal set of single-particle
local orbitals (LOs), where N is the total number of orbitals; in
this work, these LOs are generated through the Löwdin’s
symmetric orthogonalization method.51 The full Hilbert space

for the entire molecular system is thus given by O( )= ,
where O( ) denotes the Fock space determined by the LOs in
the set O. Further, defining the creation (annihilation)
operator cμ† (cμ) which creates (annihilates) an electron in
the LO ϕμ, the molecular Hamiltonian is written in the second-
quantized notation

H h c c V c c c c
1
2

N N

1 1

= +
=

†

=

† †

(1)

where hμν and Vμνλσ are the standard one- and two-electron
integrals.
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Note that the number of terms in the full molecular
Hamiltonian Ĥ scales polynomially with the total number of
orbitals N, but the dimension of scales exponentially with
N. Clearly, for large N, it will become prohibitively expensive
to directly compute the exact full ground state. To circumvent
this issue, we divide the full molecule into multiple smaller
fragments, each equipped with its own “embedding Hamil-
tonian” which contains a number of terms that only scales
polynomially with the number of orbitals in the fragment.
Given that there are potentially far fewer orbitals in each
fragment than in the whole molecular system, computing the
ground state of each fragment’s embedding Hamiltonian can
be significantly less expensive than computing the ground state
of the full system. Furthermore, using the bootstrap embedding
procedure to be described later, the ground states of individual
fragments can, to a high degree of accuracy, be algorithmically
combined to recover the desired electron densities prescribed
by the exact ground state of the full system. Thus, this
combination of fragmentation and bootstrap embedding can
be used to reconstruct the full molecular ground state more
efficiently than by direct computation alone.

We now briefly review the construction of embedding
Hamiltonians for each fragment. Consider a single fragment
associated with a label A, without loss of generality, define O(A)

= {ϕμ|μ = 1, ..., NA} with NA ≤ N to be the set of LOs
contained in fragment A; we will refer to O(A) as the set of
fragment orbitals. Note that O(A) ⊆ O, the set of LOs for the
entire molecular system. The construction of the embedding

Hamiltonian H A( )
for fragment A begins with any solution of

the ground state of the full system Ĥ. For simplicity, the
Hartree−Fock (HF) solution |ΦHF⟩ is often used because it is
easy to obtain on a classical computer. By invoking a Schmidt
decomposition, we can write |ΦHF⟩ with the following tensor
product structure for ∀A

i
k
jjjjjj

y
{
zzzzzzf b

i

N

i
A

i
A

i
A A

HF
1

( ) ( ) ( )
env
( )

A

| = | | |
= (2)

In the above decomposition, the |f i(A)⟩ represents single-particle
fragment states contained in the Fock space O( )A( ) of
fragment orbitals. On the other hand, the |bi(A)⟩ and |Ψenv

(A)⟩
represent Slater determinants contained in the “environment”
Fock space O O( )A( )\ of the N−NA orbitals not included in
the fragment. The key difference between the single environ-
ment state |Ψenv

(A)⟩ and the various “bath” states |bi(A)⟩ is that the
bath states |bi(A)⟩ are entangled with the fragment states |f i(A)⟩
while |Ψenv

(A)⟩ is not; this entanglement is quantified by the
Schmidt coefficients λi(A). Crucially, since the HF solution is
used, the sum in eq 2 only has NA terms (as opposed to 2NA for
a general many-body wave function). Denote the collection of
the NA entangled bath orbitals as Obath

(A) = {βμ|μ = 1, ..., NA},
where each of the LOs βμ are linear combinations of the
original LOs not included in the fragment, βμ ∈ Span{O\O(A)}.
Furthermore, we denote the Fock space that corresponds to
this set of entangled bath orbitals as O( )A

bath
( ) .

This tensor product structure of |ΦHF⟩ allows us to naturally
decompose the Hilbert space for the full molecular system
into the direct product of two smaller Hilbert spaces, namely

A A( )
env
( )= (3)

where

O O( ) ( )A A A( ) ( )
bath
( )= (4)

is the active fragment embedding space and A
env
( ) contains the

remaining states, including |Ψenv
(A)⟩. Note that since both sets

O(A) and Obath
(A) have size NA, the fragment Hilbert space A( ) is

a Fock space spanned of just 2NA single-particle orbitals. The
core intuition motivating this decomposition is that, in the

Figure 1. Schematic of bootstrap embedding on classical (left, blue arrows) and quantum (right, red arrows) computers. The arrows indicate BE
iterative loops that are used to optimize the corresponding objective functions. Starting from panel (i) (upper center), the original system is first
broken into overlapping fragments (Fragmentation), where each fragment is solved using a classical (iic) (upper left) or quantum eigensolver (iiq)
(upper right). In classical matching, the 1-electron reduced density matrices (1-RDM) on the overlapping sites of adjacent fragments are used to
obtain the matching condition (iiic) (lower left), while in the quantum case a coherent matching protocol based on SWAP tests of overlapping sites
combined with a single qubit measurement (iiiq) (lower right). The matching results are then used by classical computers to generate the bootstrap
embedding potential VBE (iv) (lower center) and the updated fragment embedding Hamiltonian Hemb + VBE (back to panel (i) in order to minimize
a target objective function in both the classical and quantum cases.
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exact ground state of the full system, states in A
env
( ) are unlikely

to be strongly entangled with the many-body fragment states
(consider the approximate HF ground state in eq 2, where they
are perfectly disentangled); therefore, in a mean-field
approximation, it is reasonable to entirely disregard the states
in A

env
( ) when calculating the ground state electron densities

on fragment A. Following this logic, we can define an

embedding Hamiltonian H A( )
for fragment A only on the

2NA LOs in A( ), which will have the form

H h a a V a a a a
1
2

A

pq

N

pq
A

p
A

q
A

pqrs

N

pqrs
A

p
A

q
A

s
A

r
A( )

2
( ) ( ) ( )

2
( ) ( ) ( ) ( ) ( )

A A

= +† † †

(5)

given some creation and annihilation operators ap(A)† and ap(A),
which respectively create and annihilate electrons in orbitals
from the combined set O(A) ∪ Obath

(A) for A( ). The new one-
and two- electron integrals hpq(A) and Vpqrs(A) can be computed by
projecting Ĥ into the smaller Hilbert space A( ) (consult the
Supporting Information (SI) section S1 for details on
constructing hpq(A) and Vqprs(A)). Note that since we can choose
2NA ≪ N, the ground state of this embedding Hamiltonian can
be solved at a significantly reduced cost when compared to that
of the full system Hamiltonian.

We are hence prepared to generate an embedding
Hamiltonian for any arbitrary fragment of the original
molecular system. However, the ground state electron densities
of the fragment embedding Hamiltonian are unlikely to exactly
match those of the full system Hamiltonian because, as
mentioned above, the embedding process may neglect some
small (but nonzero) entanglement of the fragment orbitals
with the environment. Because we can expect interactions in
the molecular Hamiltonian to be reasonably local, we
anticipate that the electron densities on orbitals near the
edge of the fragment (those closest to the “environment”) will
deviate most significantly from their true values, while electron
densities on orbitals toward the center of the fragment will be
most accurate. Note that the uneven distribution of
entanglement in molecular systems may likely lead to the
potential sensitivity of the BE results to particular choices and
partitions of fragments,28,52−56 while how quantum computers
may help to reduce such dependence is an open problem.

To improve the accuracy of the fragment ground state wave
function near the fragment edge, we employ the technique of
bootstrap embedding. Broadly speaking, we first divide the full
molecule into overlapping fragments such that the edge of each
fragment overlaps with the center of another. Figure 1i
illustrates this fragmentation strategy: for example, we see that
the edge of fragment A (labeled as orbital 3) coincides with the
center of fragment B. We then apply additional local potentials
to the edge sites of each fragment to match their electron
densities to those on overlapping center sites of adjacent
fragments. Because we expect the electron densities computed
on the center sites to be closer to their true values, these added
local potentials should improve the accuracy of each fragment
wave function near the edges. In the next section, we will
formalize this edge-to-center matching process rigorously and
discuss its implementation on a classical computer.
2.2. Matching Electron Densities: An Optimization

Problem. As mentioned in the previous section, we intend to
correct the electron density error near a fragment’s edge by

applying a local potential to the edge; this local potential serves
to match the edge electron density of the fragment to the
center electron density of an adjacent overlapping fragment,
which we expect to be more accurate. In principle, to achieve
an exact density matching, all k-electron reduced density
matrices (k-RDM, for any k) on the overlapping region have to
be matched. However, in practice, such matching beyond the
2-RDM is difficult on a classical computer due to the
mathematical challenge that the number of terms in k-RDM
in general increases exponentially as k. In addition, almost all
electronic structure codes available on classical computers are
programmed to deal with only 1- and 2-RDMs, despite the
importance of k-RDMs (k > 2) for computing observables such
as entropy and other multipoint correlation functions.57 Due to
this reason, the discussion of the density matching process in
classical BE in this section will be based on 1-RDMs. We note
that the matching process applies similarly if k-RDMs are
matched.

We begin by introducing some rigorous notation. Recall that
a fragment A is defined by a set of local orbitals O(A) which
constitute the fragment. We partition this set of LOs into a
subset of edge sites (or orbitals), denoted A( ), and a subset of
center sites, denoted A( ), such that OA A A( ) ( ) ( )= and

0A A( ) ( ) = . Given the ground state wave function |Ψ(A)⟩
of the embedding Hamiltonian, we further define the 1-
electron reduced density matrix (1-RDM) P(A) according to

P a apq
A A

p
A

q
A A( ) ( ) ( ) ( ) ( )= | |†

(6)

where p, q = 1, ..., 2NA and the operators ap(A)† and aq(A) are
defined in the previous section.

Suppose, for example, that the edge of fragment A overlaps
with the center of another fragment B so that 0A B( ) ( ) .
On a high level, the goal of bootstrap embedding is to find a
ground state wave function |Ψ(A)⟩, perturbed by local
potentials on the edge sites of A, such that P P 0A B

pq
( )

pq
( )| |

for indices p and q that correspond to orbitals in the set of
overlapping sites A B( ) ( ). More generally, and more
rigorously, the goal is to find a wave function which minimizes
the fragment Hamiltonian energy

Harg minA A
A

( ) ( )

A( )
| =

(7)

subject to the constraints

a a P 0p
A

q
A

A pq
B( ) ( ) ( ) =†

(8)

for all other fragments B with 0A B( ) ( ) and for all p,q
corresponding to orbitals in A B( ) ( ). Here, we explicitly
write the expectation ⟨·⟩A = ⟨Ψ(A)|·|Ψ(A)⟩ in terms of |Ψ(A)⟩ to
indicate that the optimization is over the wave function of A.

We can formulate this constrained optimization problem as
finding the stationary solution to a Lagrangian by associating a
scalar Lagrange multiplier (λB(A))pq to eq 8. Since eq 8 has to be
satisfied for any p, q, and B that overlaps with A, these
constraints can be rewritten in a more compact vector form

P( ; )B
A A B

1 RDM
( ) ( ) ( )· where the dot product conceals the

implicit sum over p,q, and each component of the vector
P( ; )A B

1 RDM
( ) ( )

pq represents the constraint associated with
the Lagrange multiplier (λB(A))pq, given by the left-hand side of
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eq 8. With this notation, we arrive at the following Lagrangian
with the constraint added as an additional term

H

P

( 1)

( ; )

A A
A

A A A

B
B

A A B
1 RDM

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

= + |
+ ·

(9)

where once again the B are fragments adjacent to A with
0A B( ) ( ) and p,q are indices of orbitals contained in the

overlapping set A B( ) ( ). Here, the additional constraint
with Lagrange multiplier A( ) is also included to ensure
normalization of the ground state wave function |Ψ(A)⟩. Solving
for the stationary solution of the Lagrangian in eq 9 will only
result in a ground state wave function for fragment A whose 1-
RDM elements at the edge sites match those at the center sites
of adjacent overlapping fragments. However, we would instead
like to solve for such a ground state for all fragments in the
molecule simultaneously. Toward this regard, we can combine
all individual fragment Lagrangians (of the form of eq 9) into a
single composite Lagrangian for the whole molecule, given by

A

N
A

1

( )
frag

= +
= (10)

where Nfrag is the number of fragments in the molecule.
Observe that we have added one additional constraint

i

k

jjjjjjj
y

{

zzzzzzza a N
A

N

p
p

A
p

A
A e

1

( ) ( )

A

frag

( )

=
=

†

(11)

with Lagrange multiplier μ to restore the desired total number
of electrons in the molecule, Ne. Note in eq 11 that p′ is
summed over indices corresponding to orbitals only in A( );
this is to ensure that there is no double-counting of electrons in
the whole molecule. By self-consistently finding ground states
|Ψ(A)⟩ for A = 1, ..., Nfrag which make the composite Lagrangian
in eq 10 stationary, we will have completed the density
matching procedure for all fragments, and the process of
bootstrap embedding will be complete.

We can gain insight into which wave functions |Ψ(A)⟩ will
make the composite Lagrangian stationary by differentiating

with respect to |Ψ(A)⟩ for some fixed fragment A and setting
the resulting expression equal to zero. Upon some algebraic
manipulation, we can recover the eigenvalue equation

H V( )
A A A A( )

BE
( ) ( ) ( )+ | = | (12)

where VBE, the local bootstrap embedding potential, is given by

V a a a a( )
B p q

B
A

pq p
A

q
A

p
p

A
p

A
BE

,

( ) ( ) ( ) ( ) ( )= +† †

(13)

where the p,q are indices of orbitals in the overlapping set
A B( ) ( ), and the p′ are indices of orbitals in the fragment

center A( ). We see that, when the composite Lagrangian is
made stationary with respect to the fragment wave functions,
the bare fragment embedding Hamiltonians become dressed
with a potential VBE that contains a component local to the
edge sites of each fragment (see the left term of eq 13). This
observation confirms our intuition that adding a local potential
to the edge of one fragment will allow the edge site electron
density to be matched to that of a center site on an overlapping

neighbor. Note that VBE also contains an additional potential
on the center sites of each fragment (see the right term of eq
13); this is simply to conserve the total electron number in the
molecule. Moreover, VBE as in eq 13 only contains one-body
terms because only 1-RDM is used for density matching. In
general, VBE will contain up to k-body terms if k-RDMs are
used for matching.

On a classical computer, the composite Lagrangian in eq 10
is made stationary through an iterative optimization
algorithm22 until the edge-to-center matching condition for
all fragments is satisfied by some criterion. One possible
criterion is to terminate the algorithm when the root-mean-
squared 1-RDM mismatch, given by
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(14)

drops below some predetermined threshold. Note again that p
and q are indices corresponding to orbitals in the overlapping
set A B( ) ( ); also, Nsites denotes the total number of
overlapping sites in the whole molecule, equal to Nsites =
∑A

Nfrag∑B∑p,q1. The final set of density-matched fragment wave
functions {|Ψ(A)⟩} for A = 1, ..., Nfrag which solve the composite
Lagrangian can then be used to reconstruct the electron
densities and other observables for the full molecular system, as
desired.
2.3. Resource Requirement and Typical Behavior of

BE on Classical Computers. Given the notation established
for classical BE, we now begin presenting new material. We
discuss the computational resource requirement and typical
behaviors of performing BE on classical computers to set the
stage for a quantum BE theory. The details of the classical BE
algorithms are omitted for succinctness, and we refer the
reader to refs 22−24 and 50 for details.

The space and time resource requirement to perform the
classical BE can be broken down into two parts: (a) the
number of iteration steps to reach a fixed accuracy for ϵ (eq
14); (b) the runtime of the fragment eigensolver. For (a),
numerical evidence suggests an exponentially fast convergence
on the total system energy as the number of bootstrap
iterations increases (black trace in Figure 2 for FCI), while a
proof of the convergence rate has yet to be established.

We focus on the resource requirement in (b) in the
following. Admittedly, an exact classical eigensolver such as full
configuration interaction (FCI) can be used to solve the
embedding Hamiltonian in eq 5. However, both the storage
space and time requirement scale exponentially as the number
of orbitals (see blue symbols and dashed line in Figure 3 for
the runtime scaling of FCI). Even with the state-of-the-art
classical computational resources, exact solutions using FCI are
only tractable for systems up to 20 electrons in 20 orbitals.58

As a result, classical computation of BE resorts to
approximate eigensolvers with only the polynomial cost in
practice, by properly truncating or sampling from the fragment
Hilbert space. One example for truncation is the coupled-
cluster singles and doubles (CCSD),59 which scales with N6

with N being the number of orbitals. Alternately, different
flavors of stochastic electronic structure solvers can be
employed as fragment solvers in BE. Depending on
implementation, these stochastic solvers can be biased or
unbiased (if unbiased, with a cost of introducing the phase
problem in general).60−63 Collecting each sample on a classical
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computer usually has similar cost as a mean field theory
(roughly O(N3)), while the overall target accuracy ϵ on
observable estimation can be achieved with a sampling

overhead of roughly ( )O 1
2 with a constant prefactor

depending on the severity of the sign problem.
Importantly, the sampling feature of these stochastic

electronic structure methods on classical computers are
strikingly similar to the nature of quantum computers where
measurement necessarily collapses the wave function. As a
result, only a classical sample (in terms of measurement
results) can be obtained from a quantum computer. This
similarity suggests a general strategy that many sampling
techniques in stochastic classical algorithms can be deployed to
design better quantum algorithms. For example, sophisticated
importance sampling techniques64,65 can be employed to

greatly improve the sampling efficiency in both classical63 and
quantum cases.66

Due their shared feature on sampling between classical
stochastic algorithm and quantum eigensolvers, we shall use
one approximate sign-problem-free flavor of stochastic
electronic structure method, the variational Monte Carlo
(VMC), to serve as an additional baseline scenario for
comparison with quantum BE in later sections. In addition
to BE convergence behavior with a FCI solver, Figure 2 also
shows, for a VMC eigensolver with single Slater-Jastrow type
wave function with two-body Jastrow factors,67,68 that the
density mismatch converges exponentially fast initially as
iteration number increases with varying number of samples.
However, partially due to the statistical noise on estimating the
1-RDM (thus the gradient for the optimization), the final
density mismatch plateaus to a finite biased value. Comparing
the VMC results across different numbers of samples, we can
see that the bias improves as the number of samples increases
(dashed horizontal lines). It is also evident that the orange
trace (640k samples) has smaller fluctuation as compared to
blue (160k samples) and gray (40k samples). Strictly speaking,
an increase of sample size by a factor of 16 would decrease the
statistical fluctuations by a factor of 4. However, our numerical
data in Figure 2 only show qualitative but not quantitative
agreement with this statement. We attribute part of the bias in
the plateau to the intrinsic truncation of the VMC ansatz in
addition to statistical fluctuations.

The increasing accuracy of density mismatch with respect to
the BE iteration also suggests an increasing number of samples
are needed. Thus, an optimal number of samples at each BE
iteration must be determined to achieve the desired accuracy
in the matching conditions. A careful design of such a sampling
schedule can potentially save a large amount of computational
resources. We defer a thorough discussion of this point to later
sections on quantum BE.
2.4. The Quest for BE on Quantum Computers. By

employing the coherent superposition and entanglement of
quantum states, the limitation of an exact classical solver can
be overcome by substituting it with an exact quantum
eigensolver such as the quantum phase estimation (QPE)
algorithm.31 This section directly compares the cost between
the two exact eigensolvers on quantum and classical
computers, the QPE and the FCI solvers, using hydrogen
chains where the initial trial state with a nonvanishing overlap
with the exact eigenstate for QPE can be efficiently prepared
on classical computers.

Figure 3 compares the runtime (gate depth) of FCI and
QPE for finding the ground state of linear hydrogen chain Hn
for different system size n. Clearly, the QPE runtime scales
only polynomially as the system size increases as expected,30,32

while its classical counterpart (FCI) has an exponentially
increasing runtime. Note the runtime is normalized to the case
of n = 1 for each solver separately (see SI section S9). The
dramatic advantage in the runtime scaling of quantum over
classical eigensolvers demonstrated above suggests that
formulating BE on a quantum computer can bring significant
benefits.

One might think that the eigensolver at the heart of the
classical BE algorithm could simply be replaced with a
quantum one. However, as mentioned before, there are two
outstanding challenges for such a quantum bootstrap
embedding (QBE) method. First, just as in classical stochastic
methods, the results of a quantum eigensolver need to be

Figure 2. Typical convergence of density mismatch with respect to
the number of eigensolver calls in classical bootstrap embedding with
a deterministic eigensolver (FCI, black circle) and a stochastic
eigensolver (VMC) with different number of samples (gray, blue, and
orange solid lines). The horizontal dashed lines show the final
plateaued value of the density mismatch for VMC, while the FCI data
converge to 10−6 after 700 eigensolver calls (not shown on the figure).
The discrete jumps around 200 and 300 eigensolver calls are due to
switching to the next BE iteration. The data are obtained for an H8
linear chain under the STO-3G basis. See SI section S9B for
computational details.

Figure 3. Runtime (normalized) as a function of system size n for
finding the ground state of a linear hydrogen chain Hn at the STO-3G
basis, comparing an exact classical solver (FCI, blue square) and an
exact quantum solver (QPE, red circle) on real classical and quantum
devices. Red (blue) dashed line shows a polynomial (exponential) fit
to the QPE (FCI) runtime. Note the crossover at large system size.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00012
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

F

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00012/suppl_file/ct3c00012_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00012?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00012?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00012?fig=fig2&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00012/suppl_file/ct3c00012_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00012?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00012?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00012?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00012?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00012?fig=fig3&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00012?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


measured for later use, but quantum wave functions collapse
after measurement. Therefore, sampling from the quantum
eigensolver is required, and the optimal sampling strategy is
unclear. Second, with quantum wave function from quantum
eigensolvers, it is not wise to achieve matching between
fragments in the same way as classical BE, as many incoherent
samples are needed to obtain a good estimation of the 1-RDM
elements. Clearly, performing matching in a quantum way is
desired.

In the next two sections (sections 3 and 4), we present how
we address these two challenges by an adaptive quantum
sampling scheduling algorithm and a quantum coherent
matching algorithm in detail.

3. QUANTUM BOOTSTRAP EMBEDDING METHODS
In previous sections, we have seen potential advantages of
performing bootstrap embedding on quantum computers, and
discussed two major challenges of doing so. In this section, we
present the theoretical formulation of our bootstrap embed-
ding method on a quantum computer that addresses these
challenges.

Section 3.1 first sets up notations and discusses a few aspects
of locality and global symmetry on performing embedding of
Fermions on quantum computers. Section 3.2 discusses a naive
extension of the classical BE algorithm on quantum computers
by matching individual elements of the RDMs directly, and
highlights the disadvantage of doing so. Section 3.3 introduces
the SWAP test circuit and shows that it achieves the matching
between two RDMs coherently. In section 3.4, we discuss
some subtleties on why it is impossible to incorporate this
coherent matching condition into the Lagrange multiplier
optimization method, and present an alternative quadratic
penalty method to perform the optimization.
3.1. Fermion-Qubit Mapping�Global Symmetry vs

Locality. When mapping the electronic structure problem to
qubits on quantum computers, it is well-known that the global
antisymmetric property of Fermionic wave functions necessar-
ily leads to an overhead in operator lengths or qubit counts.69

On the other hand, chemical information is usually local if
represented using localized single-particle orbitals.70,71 In the
case of performing bootstrap embedding, this tension between
locality of chemical information and global Fermionic
antisymmetry is more subtle. Because bootstrap embedding
intrinsically uses the Fermionic occupation number in the local
orbitals (LOs) to perform matching, it is therefore convenient
to preserve such locality when constructing the mapping.
Throughout the discussion, without loss of generality, we
assume a mapping that preserves Fermionic local occupation
number, such as the Jordan-Wigner mapping where each spin−
orbital is mapped to one qubit. Our discussion equally applies
to cases where a nonlocal mapping is used (such as parity
mapping). In that case, a unitary transformation from the
nonlocal mapping to a local mapping will be required before
actually computing the matching conditions.

It is possible to formulate QBE using matching conditions
on either qubit reduced density matrices (RDMs)72 or k-
electron RDMs73 for all k, both with an exponential number of
matrix elements. For simplicity, in the present work we use
qubit RDMs in our QBE and leave an efficient formulation in
terms of Fermionic k-electron RDMs for future work. The full
density matrix of fragment A is thus provided by ρ(A) =
|ΨA⟩⟨ΨA|. Given an orbital set R ⊂ O(A) for O(A) being a set of
orbitals in fragment A, let ρR(A) signify the RDM obtained from

ρ(A) by tracing out the set of qubits not in R. Especially, if R
only contains orbitals on the edge (center) of fragment A, then
ρR(A) represents information about the density information (for
example the occupation number) on the edge (center) of A.

These RDMs can be expanded under an arbitrary set of
orthonormal basis {Σα} as follows

I

2R
A A

m
( ) 1

4 1m

=
+ =

(15)

where ⟨Σα⟩A = ⟨ΨA|Σα|ΨA⟩ = Tr[ρAΣα], ∀α ∈ [1, 4m − 1], and
m = |R| is the number of orbitals in the set R. One convenient
orthonormal basis set is the generalized Gell-Mann basis.74 In
the special case of a 1-qubit RDM, {Σα} (α = x, y, z) is the
familiar Pauli matrices.
3.2. Naive RDM Linear Matching and Its Disadvant-

age. A naive implementation of BE on a quantum computer is
to simply replace 1-RDM in eq 6 with the qubit RDM in eq 15
on the fragment overlapping regions. Such an extension
imposes matching constraints on each element of the RDMs,
resulting the following constraint vector analogous to eq 8
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(16)

It is obvious that ρR(A) − ρR(B) = 0, if and only if all the (4m − 1)
components in the above constraint are satisfied.

Similarly, we can associate a scalar Lagrange multiplier to
each constraint in eq 16 and use this linear RDM constraint in
place of the 1-RDM constraint P( ; )A B

1 RDM
( ) ( ) in eq 9.

Finding the stationary point of this new Lagrangian gives the
same eigenvalue equation as eq 12 with a new BE potential
given by

V I I
B A

B
A

rBE
, 0

( )

B A

= ·[ ]
(17)

where , , , ,r 1 4 1m= [ ··· ··· ] is a (4m − 1)-dimensional
vector of the orthonormal basis in eq 15, B

A( ) is the Lagrange
multipliers now modulating the local potentials on each qubit
basis, and n is the number of overlapping sites between A and
B.

To perform the optimization, the eigenvalue equation, eq 12,
with the above new BE potential in eq 17 can be solved on a
quantum computer to obtain an updated wave function for
fragment A. By iteratively solving the eigenvalue equation and
updating the Lagrange multipliers ,{ } using either gradient-
based or gradient-free methods,75 an algorithm can be
formulated to solve the optimization problem. For complete-
ness, we document the algorithm from the naive linear
matching of RDMs in SI section S8.

The above is a convenient way to impose the constraint on
quantum computers, but it is computationally costly as the
number of constraints in eq 16 increases exponentially as the
number of overlapping sites n on neighboring fragments. For
each constraint equation, the expectation values must be
measured on the quantum computer, which therefore
introduces an exponential overhead on the sampling complex-
ity.

In the next section, we introduce a simple alternative to
evaluate the mismatch between two RDMs on a quantum
computer much faster based on a SWAP test.
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3.3. Coherent Quantum Matching from SWAP Test.
The wave functions of two overlapping fragments are stored
coherently as many amplitudes that suppose with each other.
The beauty of quantum computers and algorithms lies at the
ability to coherently manipulate such amplitudes simulta-
neously. We may naturally ask: are there quantum algorithms
or circuits that can coherently achieve matching between an
exponentially large number of amplitudes, without explicitly
measuring each amplitude?

In quantum information, there is a class of quantum
protocols to perform the task of estimating the overlap
between two wave functions or RDMs under various
assumptions.76 Among these protocols, the SWAP test is
widely used.47,77 Such a SWAP test on a quantum computer
can also be naturally implemented by simple controlled-SWAP
operations as in Figure 4, showing a SWAP test between two

qubits. The essence of a SWAP test is to entangle the
symmetric and antisymmetric subspaces of the two quantum
states (|ϕ⟩ and |ψ⟩) to a single ancillary qubit, such that the
quantum state of the system before the final measurement is

1
2

0 ( ) 1 ( )| = [| | | + | | + | | | | | ]
(18)

By measuring the top single ancillary qubit in the usual
computational Z-basis (collapsing it to either the |0⟩ or |1⟩
state), the overlap of the two-qubit wave function, | | |, can
be directly obtained from the measurement outcome
probability:

MProb 0
1

2

2

[ = ] = + | | |
(19)

without requiring explicit estimation of the density matrix
elements of each individual qubit.

Can we recast the linear matching conditions as linear
combination of several SWAP tests? Observe that an equivalent
condition alternative to eq 16 is the following quadratic
matching condition

( ; ) Tr ( ) 0R
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R
B

R
A

R
B

quad
( ) ( ) ( ) ( ) 2= [ ] = (20)

Interestingly, the above quadratic constraint can be rewritten
as a linear combination of three different multiqubit general-
ization of the SWAP tests (with each repeated multiple times),
regardless of the number of overlapping sites (Figure 1iiiq).
Two of the SWAP tests are to estimate the purity of ρR(A) and
ρR(B) each, while the third one is to estimate the overlap
between ρR(A) and ρR(B). (See SI section S3 for a proof of the
equivalence between the two quantum matching conditions

and section S4 on how to generalize the SWAP test on two
qubits to a multiqubit setting and how to relate the SWAP test
results to the quadratic constraint.

The reformulation of the quadratic constraint allows us to
estimate the mismatch between two fragments by measuring
only a single ancilla qubit (estimating three different
amplitudes). As compared to the linear constraint case where
an exponentially large number of constraints have to be
estimated individually (4m − 1 where m = |R| is the number of
overlapping sites again), the quadratic matching based on
SWAP tests achieves an exponential saving in the types of
measurements required.

Furthermore, the reduction of the mismatch to the
estimation of only a few (three) amplitudes in SWAP tests
allows an additional quadratic speedup by amplifying the
amplitude of the ancilla qubit before measure it. We will
discuss more details on how to achieve the quadratic speedup
in section 4.3. Admittedly, such an amplitude amplification
algorithm may be applied even to the naive linear RDM
matching by boosting individual RDM amplitude, but the
resulting quantum circuit will be much more complicated.
3.4. Optimization Using the Quadratic Penalty

Method. With an efficient way to estimate the quadratic
penalty constraint established in eq 20, it now appears feasible
to use this new constraint in eq 9 as in the case of linear
constraint. However, the nature of the quadratic matching in
eq 20 makes the same Lagrange multiplier optimization
method used in the linear case invalid. We first discuss in more
detail why this approach fails in section 3.4.1; we then describe
an alternative way of treating the quadratic constraint as a
penalty term to optimize the resulting objective function in
section 3.4.2.

3.4.1. Violation of the Constraint Qualification. A
necessary condition to use the Lagrange multiplier method
for constraint optimization is that the gradient of the constraint
itself with respect to system variables has to be nonzero at the
solution point (this guarantees a nonzero effective potential to
be added to the original Hamiltonian), a.k.a., constraint
q u a l i fi c a t i o n . 7 8 , 7 9 S p e c i fi c a l l y , w e r e q u i r e

( ; ) 0R
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quad
( ) ( ) when ρR(A) = ρR(B).

Unfortunately, in the quadratic case, we have
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when ρR(A) and ρR(B) match, which violates the above condition.
Note that any high-order constraint other than linear order will
violate the constraint qualification. The existence of such a
constraint qualification makes sense also from a physical point
of view. Because the gradient ( ; )R

A
R

B
quad

( ) ( ) enters the
eigenvalue eq 13 as the BE potential VBE modulated by the
Lagrange multipliers. The vanishing of this potential near the
solution point means there is no way to modulate VBE by
adjusting the Lagrange multipliers, and therefore will lead to
failure of convergence of the Lagrange multiplier.

Alternatively, the quadratic constraint can be treated as a
penalty by using ( ; )B

A
R

A
R

B( )
quad

( ) ( ) to substitute the

constraint P( ; )B
A A B

1 RDM
( ) ( ) ( )· in eq 9. We can then

employ the quadratic penalty method80 to minimize this cost
function. To highlight the distinction of the quadratic penalty
method from the Lagrange multiplier method, we use “cost

Figure 4. Quantum circuit of a SWAP test between two qubits (lower,
with state |ϕ⟩ and |ψ⟩). The circuit is composed of two Hadamard
gates (H), a controlled-SWAP operation in between, and a final Z-
basis measurement M on an additional ancilla qubit (top), where M =
0, 1.
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function” instead of “Lagrangian” to refer to the objective
function in the quadratic penalty case.

3.4.2. Details of the Quadratic Penalty Method. The idea
of the penalty method is to use the constraint as a penalty
where the magnitude of λB(A) serves as a weight to the penalty.
Initially, λB(A) is set to a small constant, and then we treat the
resulting cost function as an unconstrained minimization
where its minimum is found by varying the wave functions.
The next step is to increase λB(A) to a larger value leading to a
new Lagrangian, which is then minimized again by varying the
wave function parameters. This procedure is repeated until the
penalty parameter λB(A) is large enough to guarantee a small
mismatch ( ; )r

A
r

B
quad

( ) ( ) . In our case, we choose all λB(A) = λ
for all pairs of adjacent fragments.

It is helpful to note that optimization of the wave function is
done again using the eigenvalue equation as in eq 12 by tuning
the BE potential VBE. In other words, for a fixed penalty
parameter λ, the fragment Lagrangian V( )A BE{ } is minimized
with respect to VBE. For a particular parametrization in terms
of local potentials {vα} on the edge sites of fragment A

V v v I I( )
M

BE
0

{ } =
= (22)

where {Σα} is a set of Hermitian generator bases of size M on
the edge sites of fragment A (can be Pauli operators for a single
edge site), and {vα} is the corresponding local potential (real
numbers). Note that M in eq 22 can be much smaller than the
total number of generators (4m) on the edge sites, because in
each bootstrap embedding iteration, only a small local
potential is added to the Hamiltonian. This perturbative
nature of the bootstrap embedding iteration allows us to
expand the BE potential VBE in each iteration under the
Hermitian generator basis from the previous iteration, such
that the BE potential in each iteration is diagonal dominant,
i.e., M ≪ 4m where n is the number of edge sites on any
fragment A.

To update {vα}, we derive the following gradient (SI section
S5)
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∀α ∈ [0, M], that can, in principle, be used to perform the
updating of VBE to minimize A( ). In the above, C(n) is the
eigenvector of the n-th eigenstate (n ≥ 1) while C is the
eigenvector of the ground state, Wα

(n′) is a perturbation matrix
between ground state and the n′-th eigenstate for the α-th
Pauli basis at the edge site of fragment A, whereas

A
and

B

are the RDM at the edge and center sites of fragments A and B,
respectively.

The above gradient in eq 23 is only formally useful, but
computing it exactly requires all the eigenstates to be known
(not only the ground state) which is clearly very costly if
possible. Nevertheless, it serves as a good starting point to
develop an approximated updating scheme or to perform
bootstrap embedding for excited states. We leave such topics
for future investigation. In the present work, instead of using
eq 23 to update VBE, we employ gradient-free schemes to

update {vα} and measure the required expectation values using
the SWAP test to obtain the mismatch to evaluate the cost
function A( ).

We note that one additional advantage of this quadratic
penalty method is that it can be easily integrated with
variational eigensolvers34 by treating the quadratic penalty as
an additional term in the VQE cost function.81 The drawback
is that the optimized wave function only exactly equals to the
true wave function when the penalty goes to infinity λ → ∞.
Practically, we find that choosing the penalty parameter large
enough is sufficient to obtain satisfactory results.

4. QUANTUM BOOTSTRAP EMBEDDING
ALGORITHMS

Given the theoretical formulation of the QBE method in
section 3, we present a general hybrid quantum-classical
algorithm in this section that can be practically used to solve
the BE problem on quantum computers to find the BE
potentials VBE that satisfy the matching condition.

In our quantum bootstrap embedding algorithm, the
electronic structure problem of the total system is formulated
as a minimization of a composite objective function with a
penalty term constructed from the matching conditions on the
full qubit RDMs on overlapping regions of adjacent fragments.
We then design an iterative hybrid quantum-classical algorithm
to solve the optimization problem, where a quantum
subroutine as an eigensolver is employed to prepare the
ground state of fragment Hamiltonian. The quantum matching
algorithm employs a SWAP test46,47 between wave functions of
two fragments to evaluate the matching conditions, which is a
dramatic improvement as compared to the straightforward
method of measuring an exponential number (with respect to
the number of qubits on the fragment edge) of RDM elements.
Additionally, the quantum bootstrap embedding framework is
internally self-consistent without the need to match fragment
density matrices to external more accurate solutions. The
adaptive sampling changes the number of samples as the
optimization proceeds in order to achieve an increasingly
better matching conditions. We note that the SWAP test adds
only little computational cost to quantum eigensolvers which
can be readily performed on current NISQ devices. The
amplitude-amplified coherent quantum matching requires
iterative application of eigensolvers multiple times which are
more suitable for small fault-tolerant quantum computers.

The rest of this section is organized as follows. Section 4.1
gives an outline of the QBE algorithm with the quadratic
penalty method. Section 4.2 discusses possible choices of
quantum eigensolvers with an analysis of sampling complex-
ities. We then present a way to achieve an additional quadratic
speedup by using a coherent amplitude-estimating algorithm in
Section 4.3.
4.1. The Algorithm. We present a high-level framework of

the main algorithm in this section. As a comparison, the QBE
algorithm with naive linear matching can be found in SI section
S8. Code for the algorithms and data for generating the plots
are available as open source on github.82

To quantify the mismatch across all fragments, we define Δρ
to be the root-mean-square density matrix mismatch averaged
over all the overlapping sites of all the fragments according to

N
1

Tr ( )
A B r

r
B

r
A

sites ,

( ) ( ) 2

A B( ) ( )

= [ ]
(24)
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where Tr ( ) ( ; )r
B

r
A

r
A

r
B( ) ( ) 2

quad
( ) ( )[ ] = as in eq 20,

which may also be recognized as the Frobenius norm of (ρr(B)

− ρr(A)). Nsites is the total number of terms in the double sum in
eq 24, N A B

A B
sites

( ) ( )= | |, with | | denoting the
number of elements in set .

The cost function ( )A( ) being optimized is discussed in
section 3.4.1. For clarity, we write it explicitly here

H( ) ( ; )A A
A

B
R

A
R

B( ) ( )
quad

( ) ( )= +
(25)

with quad given by eq 20. We have omitted the term A( ) for
simplicity since the normalization of the wave function is
guaranteed for a fault-tolerant quantum computer. However,
this term can be important on a noisy quantum computer
where the purity of the wave function can be contaminated.
Note the expectation value in eq 25 has to be estimated by
collecting samples on a quantum computer.

The quantum bootstrap embedding algorithm with quad-
ratic penalty method is presented in Algorithm 1. The

algorithm takes as its input the total Hamiltonian of the
original system, and then performs the fragmentation and
parameter initialization, followed by the main optimization
loop to achieve the matching. Finally, it returns the optimized
BE potential VBE

(A) for any fragment A and the final mismatch
Δρ. Inside the main loop (line 9 of Algorithm 1), the cost
function ( )A( ) for each fragment A is minimized for a fixed
penalty parameter λ (lines 10 and 11). The penalty λ is then
increased geometrically (line 12) until the mismatch criteria is
met, i.e., Δρ ≤ ε.

A key step of the algorithm is the minimization of ( )A( ) at
line 11, which consists of repeatedly generating the BE
potential VBE

(A) and estimating the mismatch using the SWAP

test. BE potentials VBE
(A) are generated differently for different

optimization algorithms. In our implementation, a quasi-
Newton method, the L-BFGS-B83 algorithm, is used at line 11
for minimizing ( )A( ) , where VBE

(A) is proposed by the
optimizer in order to estimate the inverse Hessian matrix to
steer the optimization properly. Alternatively, if derivative-free
methods such as the Nelder−Mead84 method is used, VBE

(A) will
be generated in a high-dimensional simplex defined by the
coefficients {vα} in eq 22, which is repeatedly refined.

Once VBE
(A) is generated, the first term in the cost function in

eq 25 is estimated by invoking the quantum eigensolver for the
Hamiltonian (HA + VBE

A ). The second term, the mismatch in eq
25 can be estimated by measurement outcomes of the ancilla
qubit in the SWAP test (section 3). The mismatch estimation
at line 13 is performed in the same way as those in line 11.
Note that the number of samples Nsamp

SWAP (eq 27) for the SWAP
test estimation can be changed adaptively in different BE
iterations for different accuracy, which we discuss in detail in
the next section.
4.2. Eigensolver Subroutines and Sampling Complex-

ity. Two major quantum eigensolvers, QPE85 and VQE34 can
be used in line 11 and 14 of Algorithm 1 to estimate the cost
function. QPE is an exact eigensolver, where the system wave
function collapses to the exact ground state regardless of the
number of evaluation qubits used. In contrast to QPE, VQE is
an approximate eigensolver, and the results depend on the
choice of ansatz and the optimization algorithm used.

A crucial feature of a quantum eigensolver is its probabilistic
nature, in a sense that any measurement collapses the entire
quantum state. This perspective allows us to treat a quantum
eigensolver as a sign-problem-free sampling oracle for
correlated electronic structure problems where ref 86 provides
a concrete example.

The stochastic nature also means a more careful treatment
on the number of samples is required to fully quantify any
potential quantum speedup. In general, for typical iterative
mixed quantum-classical algorithms, some parameters are
usually passed from one iteration to the next, where the
parameters are estimated by repeatedly sampling from a
quantum eigensolver oracle through proper measurement. This
means the uncertainty on these parameters estimated from one
iteration has to be small enough to avoid a divergence of the
algorithm as iteration continues.

In particular in the bootstrap embedding case, the sampling
accuracy on the fragment overlap of each iteration has to be
good enough such that the uncertainty of the mismatch passed
to the next iteration will not spoil the iteration and lead to
diverging results as iterations continue. In the following,
sampling complexities of classical matching and SWAP-test-
based quantum matching are compared.

When estimating the overlap S to an accuracy ϵ naively by
density matrix tomography (TMG) of individual RDM
elements, it is shown under mild assumptions that the total
number of samples required (SI section S6)

i
k
jjj y

{
zzzN S n e

D
( , , ) ( )n

samp
TMG

2=
(26)

where n is the number of qubits on the overlapping region and
D is a system-dependent constant as a function of the two
RDMs. In contrast, the quantum matching based on SWAP test
costs
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which is independent of the size n of the overlapping region of
two fragments. This demonstrates that our quadratic quantum
matching achieves an exponential speedup compared to the
naive tomography of density matrices. This dramatic speedup
is perhaps not that surprising because we only care about one
particular observable (the overlap) instead of the full
subsystem RDMs. Therefore, if the observable can be mapped
to the measurement outcome of a few qubits by some quantum
operations (SWAP test in this case), advantages are expected in
general.

Moreover, the dependence of Nsamp
SWAP (S, ϵ) on the overlap S

and estimation accuracy ϵ allows an adaptive sampling
schedule to be implemented for line 11 and 14 of Algorithm
1. For example, we may use the overlap S estimated from the
previous BE iteration to compute the required Nsamp

SWAP in the
current BE iteration. The accuracy ϵ can also be dynamically
tuned according to the error of the first term in eq 25, as well
as the value of the penalty parameter λ. For example, at the
beginning BE iterations, the mismatch (Δρ or more precisely

( ; )r
A

r
B

quad
( ) ( ) ) is large so that a moderate ϵ suffices. As the

BE iteration proceeds, the overlap converges exponentially,
therefore an exponentially decreasing ϵ has to be used as well.
A numerical value of ϵ needs be determined from case to case.

In addition, eq 27 suggests an interesting behavior. As the
QBE algorithm proceeds and the overlap S increases, fewer
samples are needed to achieve a target accuracy. If S
approaches 1 exponentially fast as S ∼ 1 − e−γ·niter for some
constant γ, then the required number of samples for SWAP will
decrease exponentially as BE iteration niter goes Nsamp

SWAP ∼
e−γ·niter/ϵ2. In practice, the overlap of two subsystems can never
approach 1 but saturates to a constant 0 < c < 1 when
matching is achieved, and therefore Nsamp

SWAP ∼ (1−c)/ϵ2 still
obeys the 1/ϵ2 scaling generally. This, on the other hand,
suggests that a larger overlapping region is advantageous to
reduce Nsamp

SWAP because the RDM of a larger subsystem of a pure
state will have greater purity (hence larger c) in general.
4.3. Additional Quadratic Speedup. The core of many

quantum speedups over classical algorithms lies at the ability of
quantum computers to directly manipulate the probability
amplitude instead of probability itself, while classical computers
only have access to probability. With this idea, the above
perspective of treating a quantum eigensolver as an oracle
where some amplitude is estimated through proper measure-
ments allows us to achieve an additional quadratic speedup in
our quantum bootstrap embedding algorithm. This section
compares two different versions of quantum matching
algorithms in QBE, the SWAP and the SWAP+AE algorithms.
However, the same argument of quadratic speedup applies to
classical sampling based eigensolvers such as VMC as discussed
in detail at the end of this section.

The intuition is that instead of directly measuring a small
quantum amplitude to accumulate enough counts to reduce
the error bar, we may use quantum algorithms to first amplify
the amplitude before the measurement. One way of under-
standing this is that eq 27 contains an overlap-dependent
prefactor (1−S2) as discussed above. If the overlap S (as a
probability amplitude) can be manipulated on the quantum
computer easily such that (1−S2) is on the order of ϵ, then
Nsamp
SWAP will be proportional to only 1/ϵ instead of 1/ϵ2. There

are well-established ways of performing such an amplitude
amplification task via coherent quantum algorithms.48 See SI
section S7 for the construction of the amplitude amplification
and binary search quantum algorithm.

In particular, in each iteration of the algorithm, it can be
shown that by combining oblivious amplitude amplification
and a binary search protocol, estimating the overlap up to
precision ϵ between adjacent fragments takes Nsamp

SWAP+AE samples
(state preparation and SWAP tests)

i
k
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2 ln(2)
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SWAP AE 2=+

(28)

regardless of the overlap S.
Comparing eq 28 with eq 27, the above analysis suggests

that our coherent quantum matching algorithm achieves a
quadratic speed up (up to a factor of ( )polylog 1 ) as compared
to the SWAP test based quantum matching algorithm, which is
consistent with typical behavior of a Grover-type of search
algorithm. Moreover, in contrast to eq 26, an exponential
advantage is present with respect to the size of the overlapping
region, indicating the benefit of using our quadratic QBE
algorithm for fragment matching in the presence of a large
overlapping region.

In the above, we leverage amplitude amplification to achieve
a quadratic speedup of a quantum subroutine based on a
SWAP test. More generally, such an amplitude amplification
technique can be utilized to achieve a general quadratic
speedup in the required number of samples for any Monte
Carlo classical algorithms.87−89 This can be understood by
realizing that classical probability distributions may be encoded
in the amplitudes of the quantum state of a quantum
computer, where measurements performed after some unitary
quantum computation are similar to sample from the quantum
computer to extract the probability distributions. When
treating the unitary quantum computation part as a quantum
blackbox, it is then easier to understand the quadratic speedup
in the number of samples as compared to classical Monte
Carlo methods. In our case, the quantum blackbox is the
quantum eigensolver used to find the ground state for each
fragment, while the classical blackbox is the stochastic classical
eigensolvers such as VMC.

5. RESULTS AND DISCUSSIONS
With the theoretical foundation and algorithms discussed in
previous sections, we present numerical results in this section
using a typical benchmark system in quantum chemistry,
hydrogen chains under a minimal basis. In section 5.1, we
demonstrate the convergence of the QBE algorithm with an
exact solver (at infinite sampling limit) using an H8 molecule
with the STO-3G basis. In section 5.2, we present numerical
evidence for the sampling advantages of the QBE algorithm in
terms of overlapping fragment size (noninteracting H4
molecule with STO-3G basis) and target precision over
incoherent estimation and classical VMC sampling (H8
molecule under STO-3G basis). Numerical results using
approximate variational quantum eigensolvers (VQE) on a
random spin model and a perturbed H4 molecule are
documented in section S9E of SI for interest readers, where
a similar BE convergence is established at the beginning
iterations but later plateaus, likely due to intrinsic VQE ansatz
truncation errors. A detailed discussion of BE+VQE goes
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beyond the scope of this work, and we leave that for future
investigation.
5.1. Convergence of QBE in Infinite Sampling Limit.

We focus on demonstrating the convergence of QBE in the
infinite sampling limit by using an exact deterministic solver
with the quadratic constraint in eq 20 and linear constraint in
eq 16. As a standard benchmark system for the electronic
structure, we perform QBE on an H8 chain under a minimal
STO-3G basis, which is fragmented into six overlapping
fragments each with six embedding orbitals. Figure 5a shows

the exponential convergence of the density mismatch for an H8
molecule in both linear and quadratic constraint cases. This
convergence behavior of QBE matches the convergence of
classical BE in Figure 2 with an exact classical solver (FCI),
demonstrating the correctness of the new constraints. The
agreement on the convergence with classical BE in Figure 2 is
expected since at an infinite sampling limit the outer iterations
in both classical and quantum BE are the same classical
optimization routine.

To quantify how much energy error the final converged
result has, Figure 5b shows the absolute value of the error in
energy using the energy in the last (11th) iteration as a
reference. We can see that the energy errors from both the
linear and quadratic constraint algorithm exhibit similar
exponential convergence as the density mismatch. Moreover,
the energy in both cases converges to the same value within
10−6 in the last iteration (not shown in the figure). We note
that the linear constraint case shows a slightly oscillatory
convergence, while the quadratic case is free of such oscillatory
behavior. The fact that the quadratic appears to converge
slightly faster than the linear may be coincidence for the
system investigated, and the convergence rate in general
depends on the optimization algorithm chosen. See SI section
S9D for a detailed description on definition of the energy.
5.2. Sampling Advantage of Coherent Quantum

Matching. In the previous section, we have seen that our
quantum bootstrap embedding algorithm converges as

expected in the infinite sampling limit. It is also seen (in the
SI) that the approximate VQE leads to biased behavior on the
density matching. In practice, only a finite number of samples
can be collected on a quantum computer, and we will focus on
this scenario in this section. In particular, we present numerical
data demonstrating the sampling advantage of our coherent
quantum matching algorithm. Section 5.2.1 discusses the
sampling advantage of the quantum matching algorithm for an
overlapping region of increasing size, echoing the analytical
sampling complexity derived in section 4.2. In section 5.2.2,
the additional quadratic speedup in estimating the overlap via
amplitude amplification and binary search (AE) is presented,
which agrees with the theoretical sampling complexity in
section 4.3.

5.2.1. Advantage in Fragment Overlap Size. To perform
bootstrap embedding, it is usually advantageous to partition
the system into fragments with large overlapping regions to
increase the convergence rate, because a large overlapping
region necessarily means more information is provided to
update the local potential for the following BE iteration.
However, as is seen in eq 26 of section 4.2, a larger overlapping
size also leads to a potentially exponentially higher sampling
complexity versus the number of qubits in the overlapping
region, if the overlap is naively estimated from density matrix
tomography (TMG). The quantum matching algorithm
implemented by a SWAP test (Figure 1iiiq) bypasses the
need for density matrix tomography, and therefore leads to a
sample complexity, as in eq 27, independent of the size of the
overlapping region.

To validate our theoretical sample complexity, a simulation
of the quantum matching algorithm with QPE as an
eigensolver for two identical H4 chains is performed using a
noiseless Qiskit AerSimulator (see SI section S9C for more
details) for an increasing overlap region ranging from 2 to 4, 6,
and 8 qubits (schematic in Figure 6). In the simulation, we first
use QPE to prepare the ground state for two noninteracting H4
molecules separately. A SWAP test is then performed on
relevant qubits in the overlapping region between the two H4
molecules. The evaluation qubits for QPE and the ancilla qubit
for SWAP test are all measured afterward. Postselection on the
QPE evaluation qubits are performed in order to select the

Figure 5. Convergence of the quantum bootstrap embedding
algorithms on (a) density mismatch and (b) energy error for the
linear constraint (pink) and quadratic penalty method (red) in the
infinite sample limit for an H8 molecule. The dashed trend lines in
both panels indicate an exponential fit.

Figure 6. Sampling complexity ratio of naive density matrix
tomography (TMG) and SWAP test versus number of qubits in the
overlapping region for a target precision ϵ = 0.001 on overlap S. The
inset shows a simulated convergence of overlap (S) estimation using
quantum matching (SWAP) for the case of two overlapping qubits.
Data are obtained from a noninteracting chain of H4 (see SI section
S9C for details).
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ground states of H4 molecules. The SWAP test results are
processed and converted to the estimation on the overlap S.

The inset of Figure 6 shows the estimated overlap S as a
function of sample size (number of eigensolver calls) in the
case of two overlap qubits. The estimated overlap converges to
the exact value (black dashed horizontal line) for roughly four
million samples within 5 × 10−4 (error bar invisible for the last
data point). This demonstrates the correctness of our quantum
matching algorithm.

By repeating a similar estimation as described above for
increasingly larger overlapping regions, the exponential
sampling advantage of the quantum matching algorithm over
naive density matrix tomography is evident in Figure 6. As we
can see, to achieve a constant target precision of ϵ = 0.001 on
the overlap S, the ratio between the SWAP test estimation and
the naive tomography estimation for the required number of
eigensolver calls increases exponentially as the number of
qubits.

We note that in general, overlaps between density matrices
are not low-rank observables, so the sampling complexity of
estimating it is likely to be high. However, more efficient
sampling schemes may exist than the naive density matrix
tomography as presented in eq 26. For example, by sampling
the differences in the RDMs between the current and the
previous BE iterations, the sampling complexity could be much
better than exponential. We leave this for future investigation.

5.2.2. Additional Quadratic Speedup in Accuracy. We
have seen in the previous section that the quantum matching
implemented by a SWAP test shows a potentially exponential
sampling advantage in terms of the size of the overlapping
region as compared to naive density matrix tomography
(compare eq 27 to eq 26). However, the sample complexity in
the estimation accuracy ϵ follows the same scaling of 1/ϵ2 as
classical sampling based eigensolvers such as VMC. As is
derived in section 4.3, we see that the sample complexity can
be reduced to roughly 1/ϵ with a coherent quantum matching
algorithm (SWAP+AE), by combining amplitude estimation
and a binary search protocol, thus achieving a quadratic
speedup. In this section, we present concrete numerical data
demonstrating this quadratic speedup.

Figure 7 shows that for a single BE iteration, the required
number of samples (eigensolver calls) on estimating the RDM
overlap S between two adjacent fragments as a function of the
required precision on the overlap, comparing the SWAP test
based quantum matching (blue) and the coherent overlap
estimation combining the SWAP test and amplitude estimation
(SWAP+AE) (red). We can see that the required number of
samples increases quadratically as the accuracy ϵ increases for
the SWAP test based estimation. In contrast, the slope of the
SWAP+AE sample complexity is reduced to roughly half of the
SWAP test, demonstrating the quadratic speedup.

To compare the classical VMC sampling convergence with
the quantum overlap estimation method, we also overlay the
number of VMC eigensolver calls (blue marks) versus target
precision on estimating the overlap on top of the SWAP test
sampling complexity for the same H8 molecule. The general
agreement between the VMC eigensolver calls and the derived
SWAP test eigensolver calls highlights the similarity of classical
stochastic electronic structure methods and a quantum
incoherent matching algorithm in terms of blackbox sampling
complexity, echoing the idea of treating quantum computers as
coherent sampling machines. It is worthwhile noting that this
quadratic speedup is only advantageous in the high precision

(small ϵ) limit, as is evident from the existence of a crossing
point in Figure 7 (between 10−4 and 10−2), which defines a
critical ϵ*. For ϵ < ϵ*, SWAP+AE is favored, whereas the
SWAP test wins when ϵ > ϵ*.

Moreover, in addition to the dependence on estimation
accuracy ϵ, the sampling complexity also depends on the value
of the overlap S. The inset of Figure 7 compares the number of
eigensolver calls using SWAP (blue) and the SWAP+AE
estimation (red) for estimating the overlap during quantum
matching. In more detail, the sample complexity for the SWAP
test decreases quadratically as the overlap S approaches 1 (eq
27). As a comparison, the SWAP+AE stays roughly a constant
for the coherent quantum matching (28), because the
amplitude amplification process used in the present work is
agnostic to the value of the amplitude (overlap S), i.e.,
oblivious amplitude amplification.90,91 The slight drop in
sample complexity in the SWAP+AE approach (red line, inset
of Figure 7) is due to the discrete bit representation of S (SI
section S7B). The different scaling on S between these two
algorithms leads to a crossover of the sampling complexity at
roughly S = 0.8 for a target precision of ϵ = 0.001. This
crossover suggests again that the plain SWAP test is
advantageous for a large overlap, while amplitude estimation
works better for small overlap S.

In addition, as mentioned in the previous section, as the
bootstrap embedding iteration proceeds, the exponential
convergence of the density mismatch (overlap S) suggests
the need for an exponentially increasing accuracy ϵ on the
overlap estimation. This further means the number of samples
per iteration in the SWAP test should increase exponentially as
the number of iterations. Similarly, SWAP+AE achieves a
square-root speedup in the total sample numbers (remains
exponential). We note that there may exist ways of sampling
the overlap in the current BE iteration normalized by the
previous BE iteration to accelerate this requirement on a large
number of samples, which we leave for future investigation.

Figure 7. Number of eigensolver calls required as a function of target
precision at overlap S = 0.4, comparing SWAP or VMC (blue) and
SWAP+AE (red) estimation for the H8 chain with STO-3G basis. The
blue dashed line shows the number of samples (eigensolver calls)
needed in the SWAP test as derived in eq 27, while the red dashed line
plots a more accurate version of eq 28 (SI section S7C) with red
circles highlighting a few data points spanning low to high target
precisions. The blue scatter points are the number of VMC
eigensolver calls required to achieve the corresponding target
precision on the 1-RDM overlap estimation for the same H8
molecule. The inset plots the number of eigensolver calls as a
function of the overlap S for a fixed target precision ϵ = 0.001. Note
the crossover in both plots.
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6. CONCLUSION AND OUTLOOK
We have developed a general quantum bootstrap embedding
method to find the ground state of large electronic structure
problems on a quantum computer by taking advantage of
quantum algorithms. We formulated the original electronic
structure problem as an optimization problem using a
quadratic penalty to impose matching condition of adjacent
fragments. A coherent quantum matching algorithm based on
the SWAP test achieves efficient matching with an exponential
sampling advantage compared to naive RDM tomography. By
estimating the amplitude that encodes the overlap information
combing an amplitude amplification and binary search
protocol, an additional quadratic speedup is achieved. In
addition, an adaptive sampling scheme is used based on
previous overlap information and the desired target accuracy to
improve the sampling efficiency.

We demonstrate the performance of the QBE algorithm
using a linear hydrogen molecule under minimal basis. Our
QBE algorithm is shown to achieve exponential convergence in
density mismatch and energy error similar to classical
bootstrap embedding. However, instead of the exponential
cost of an exact classical solver (full configuration interaction),
quantum eigensolvers such as a quantum phase estimation can
solve the fragment electronic structure exactly without
incurring the exponential cost. Approximate quantum
eigensolvers (QES) are likely to achieve exponential speedup
compared to FCI. However, such exponential speedup
depends on detailed implementation and the ease of input
state preparation.

We have also compared the sampling advantage of different
versions of quantum matching algorithms over classical BE
+VMC 1-RDM matching for achieving the same accuracy,
where QBE+TMG (full RDM matching) is potentially
exponentially slower than classical BE+VMC (1-RDM
matching) because of the exponentially large number of full
RDM elements to estimate (sections 4.2 and 5.2.1). QBE
+SWAP+AE achieves quadratic speedup as compared to
classical BE+VMC and QBE+SWAP (sections 4.3 and 5.2.2).
Different choices of quantum eigensolvers and matching
algorithms are summarized in the flowchart in Figure 8,
where accuracy and speedups are labeled for each method.

While we have made progress toward solving electronic
structure problems employing quantum resources in bootstrap
embedding, there are several open questions to explore in the
future. One immediate task is to perform more thorough
benchmarks comparing different versions of QBE and classical
BE algorithms in terms of both speedup and accuracy
quantitatively. Beyond benchmarks, at the algorithmic level,
it is important to reconstruct92,93 the total system density
matrices from the subsystem ones in order to compute
observables other than the energy. Ideally, quantum algorithms
that can perform the reconstruction process would be desired.
Moreover, we have established how the bootstrap embedding
potential can affect the system energy including the excited
states in eq 23. Future works on developing a QBE algorithm
targeting excited states94 or finite temperature electronic
structures63,95,96 would be of great interest. Alternative
constraint optimization methods such as the augmented
Lagrangian method can also be explored to achieve potentially
better convergence.16

In addition, the idea of quantum matching proposed in the
present work could also be exploited further in other

embedding theories to harness quantum computers and
resources, including but not limited to embedding schemes
based on wave functions, density matrices, and Green’s
functions.9 In these contexts, it is likely that more sophisticated
quantum primitives and algorithms could accomplish quantum
matching more efficiently than the simple SWAP test we
employ. For example, it is possible that higher order matching,
or matching of derivatives, could be accomplished quantum-
mechanically, thus side-stepping sampling noise.

More broadly, these quantum embedding theories and
algorithms enabled by quantum computation resources open
new possibilities in chemistry, physics, and quantum
information. In the near term, molecules with more complex
valence electronic structures such as polyacetylene or
polyacene chains beyond minimal basis can be treated with
QBE on current noisy quantum computers with a few hundred
qubits. In the longer term, large molecular systems in
catalysis97,98 and protein−ligand binding complexes99,100 likely
can be simulated at a much higher accuracy by combining
state-of-the-art quantum and classical computational resources
in embedding properly. In condensed matter and material
science, quantum bootstrap embedding may be adapted to
periodic systems20,101,102 for quantum material design103 and
probing phase diagrams of various lattice models104 close to
the thermodynamic limit.

Finally, from a viewpoint of quantum information, the
concept of embedding is closely related to entanglement.
Understanding the connection between the performance of
quantum embedding algorithms and fragment-bath entangle-
ment entropy may provide a general way to describe and
understand the complexity of chemical and physical problems
from a quantum information perspective.105−107 Current
quantum computers are small�we believe our quantum
bootstrap embedding method provides a general strategy to
use multiple small quantum machines to solve large problems
in chemistry and beyond.108,109 We look forward to future
development in these directions.

Figure 8. Summary of difference choices of quantum eigensolvers
(QES) and matching algorithms discussed in the present work, with
speedup and cost labeled on each arrow accordingly. Overall, the best
algorithm (QBE+SWAP+AE with exact QES) is highlighted in red.
Note that approximate QES are likely to achieve exponential speedup
as compared to classical FCI solver. It is however not guaranteed and
depends on specific implementation and the ease of input state
preparation. We therefore use “possible exponential speedup” for it.
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