
Preview
A Language for Molecular
Computation
Benjamin L. Foulon,1 Yuan Liu,1 Jacob K. Rosenstein,2

and Brenda M. Rubenstein1,*
Advances in molecular computing have been thwarted by the lack of theoretical

underpinnings that are both generalizable and experimentally practical. In a

recent issue of iScience, Dueñas-Dı́ez and Pérez-Mercader begin to fill this

void by illustrating the correspondence between Chomsky’s hierarchy of formal

grammars and example chemical automata.
1Department of Chemistry, Brown University,
Providence, RI 02912, USA

2School of Engineering, Brown University,
Providence, RI 02912, USA

*Correspondence:
brenda_rubenstein@brown.edu

https://doi.org/10.1016/j.chempr.2019.11.007
With semiconductor transistor dimen-

sions approaching fundamental phys-

ical limits, researchers have revived an

age-old question: are there alternative

computing paradigms that would

enable high-performance computation

at molecular scales? The prospect of

using molecules for computation is

tantalizing given the staggering amount

of information that small quantities of

chemicals could encode: if every mole-

cule in a flask could be engineered to

compute, Avogadrian (>1023) numbers

of parallel computations could be per-

formed in just cubic centimeters of vol-

ume.Moreover, molecules can undergo

collective phase transitions that are

inherently nonlinear and possess many

degrees of freedom, including vibra-

tional, nuclear, and constitutional

states, each of which could be used for

information storage and processing on

its own intrinsic timescale. Molecular

computing may sound far-fetched, but

all of biology relies on intricately

evolved molecular information process-

ing systems. Despite this promise, many

foundational theoretical and experi-

mental questions remain to be resolved

before a practical and competitive mo-

lecular computer could ever be

realized.

Thus far, molecular information demon-

strations have overwhelmingly focused

onmolecular data storage and chemical
logic gates. Biomolecular examples of

information storage have now become

somewhat routine, and the past two de-

cades have seenmegabytes of chemical

data written and read back using DNA,

RNA, metabolites, peptides, and poly-

saccharides.1–3 More recently, data

have also been successfully written to

non-biological small molecules,

including Ugi reaction products and

phenols.4,5

Chemical computation, on the other

hand, has been significantly more chal-

lenging to realize, because the field

still lacks a clear theoretical underpin-

ning for general purpose chemical

computations that are experimentally

viable (see Chen et al.6 for the most

compelling theory to date). Some of

the earliest examples of molecular

computing harnessed DNA hybridiza-

tion to solve optimization problems.

In the years since, many efforts

have transitioned from designing

single-purpose molecules for specific

computational demonstrations to

designing more universal chemical

logic gates that can, in principle,

be cascaded to realize more generaliz-

able chemical circuits.7 At first, many

of these gates were designed using

biomolecules, but the relatively recent

realization that small-molecule chemis-

tries manifest a much wider range of

behaviors—and therefore computa-
Chem 5, 3006–3019
tions—has ushered in the design of

small-molecule- and chemical-oscil-

lator-based gates.8

Nevertheless, designing chemical logic

gates amounts to a conservative

approach to chemical computing

when compared to the human body,

which orchestrates everything from

learning tasks to homeostasis not via

an assemblage of gates but through

more computationally complex feed-

back loops.9 It is only in the past

few years that researchers have

explored approaches that go beyond

gates by attempting to map small-

molecule reactions to more complex

mathematical operations.4 Without a

theoretical framework that can guide

the integration of these reactions into

meaningful computations, however,

many of these efforts amount to shoot-

ing in the dark.

In a recent issue of iScience, Dueñas-

Dı́ez and Pérez-Mercader take a step

forward by demonstrating one form

of computation, formal language

recognition, using non-biological reac-

tions.10 They examine three chemical

systems that can be described by

three classes of formal grammars

of increasing complexity—regular,

context-free, and context-sensitive—

from Chomsky’s hierarchy. In doing

so, they show how reaction network

features, such as pH and system-

state oscillation, can be employed to

perform computational tasks. Their

early success points to language-based

logic as a potential framework for

unifying chemical computation.
, December 12, 2019 ª 2019 Elsevier Inc. 3017

mailto:brenda_rubenstein@brown.edu
https://doi.org/10.1016/j.chempr.2019.11.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chempr.2019.11.007&domain=pdf


As a first simple example, the authors

build a finite automaton (FA) out of a

bimolecular reaction and use it to

recognize the L1 regular language.

FAs accept or reject patterns based

on predefined rules; for elementary

bimolecular reactions (A+B/C), the

rule is to produce C if both A and B

are present, enabling it to recognize

the L1 language of strings containing

at least one A and B. The reaction ‘‘ac-

cepts’’ inputs if C is produced and ‘‘re-

jects’’ them otherwise. The authors use

a precipitation reaction, in which C is

detectable on sight, to perform the

recognition.

To recognize a context-free language,

the authors build a 1-stack pushdown

automaton (1-PDA) out of a pH reaction

network. 1-PDAs are essentially FAs

with a stack that can have symbols

added (pushed) to and removed (pop-

ped) from it. Chemically, this requires

(1) a chemical-based stack that can

have things added and removed and

(2) a way to reject input strings that try

to pop symbols from an empty stack.

In the authors’ reaction network, the

pH level acts as a stack, with pH = 7

indicating empty. This network can

recognize the Dyck language of well-

balanced pairs (e.g., sets of parenthe-

ses) represented by additions of weak

acid (‘‘open’’) or strong base (‘‘close’’).

Adding acid pushes to the stack,

whereas adding base pops from the

stack. Any string that reduces the pH

below 7 implies an imbalance and is

immediately rejected. Strings read to

their end are accepted only if pH = 7,

which implies a balanced number of

acid and base additions.

Recognizing more sophisticated

context-sensitive languages requires

Turing machines (TMs), which can be

built from PDAs with multiple interact-

ing stacks. Thus, chemical TMs need

multiple measurable quantities that

non-linearly depend on each other. In

the Belousov-Zhabotinsky (BZ) oscilla-

tory reaction network, there is a non-
3018 Chem 5, 3006–3019, December 12, 2019
linear relationship between oscillation

frequency (f) and deviations from the

maximum redox potential (D). The au-

thors use f as a stack and D as a

symbol-processing counter. These

quantities depend on the system’s

levels of oxidizing and reducing agents,

along with the basicity; adding to

each sequentially corresponds to

inputting a string made of symbols a,

b, and c. Using this mapping, the

network can recognize the L3 language

(L3 = (an, bn, cn)).

There are several reasons to be encour-

aged by these early but exciting dem-

onstrations. In contrast with some pre-

vious proposals for universal chemical

computation, Dueñas-Dı́ez and Pérez-

Mercader’s is non-biological and yet

still practical: each of their automata in-

volves a one-pot reaction and is thus

more amenable to future automation.

Furthermore, the authors’ realization

of several language-recognition tasks

in different chemistries provides a cor-

respondence between the complexity

of a chemical reaction and the difficulty

of the language-recognition task.

Increasing reaction complexity from a

single bimolecular reaction to a set of

coupled reactions demonstrates how

specific properties of chemical reaction

networks are useful in achieving partic-

ular computational goals. This provides

much-needed intuition to guide the

search for chemical reaction networks

in the future.

Nonetheless, as the authors concede,

this work falls short of establishing a

rigorous mapping between chemical

reaction networks and automata. So

far, this approach seems to offer a new

vocabulary to describe existing chemi-

cal systems rather than systematic

paths for designing future ones. A

larger breakthrough would define

how to reliably implement a broad

family of mathematical forms in chemis-

try. This will require constraints that

allow chemical outputs to be cascaded

directly into chemical operators; con-
siderations of yield, speed, and energy;

and procedures for determining which

sets of formal languages are physically

realizable. Here, as in other early

work on chemical logic, we must draw

an important distinction between

observing that a system can bemapped

to a Boolean logic gate (for example)

versus first defining an arbitrary logic

function and then identifying a chemi-

cal system that implements it.

Questions also remain about how the

proposed networks would scale to

larger problems. There may be an Avo-

gadrian number of molecules in any

macroscale system, but if they cannot

be programmed or read indepen-

dently, then this parallelism is of limited

use. Dueñas-Dı́ez and Pérez-Mercader

correctly point out that the complexity

of an operation (or formal language)

corresponds to its computational po-

wer. It is useful to remember that

electronic logic gates are trivial in

isolation, but they are powerful

because they can be reliably intercon-

nected into large networks. Outside

of biology, it is still challenging to ima-

gine comparable levels of programma-

ble complexity in chemical networks.

This is an immense and worthy chal-

lenge, and it is our belief that re-

searchers should not settle for small

isolated examples of chemical logic.

One useful measure of a chemical

computation could be the degree to

which it saves electronic computations.

For example, a chemical computation

would show a clear benefit if evaluating

an input string of length N would have

required O(N3) electronic instructions

but only O(N) chemical measurements.

In this understandably early example,

the simple formal languages that the

authors have chosen would require

only O(N) instructions to evaluate. Un-

fortunately, their pH-PDA and BZ sys-

tems both still require continuous

observation and the same O(N) chemi-

cal measurements to classify input se-

quences as would also be required



electronically, limiting their practical

value.

When considering isolated examples,

showing that one chemical system can

correspond to one particular computa-

tion can feel like painting a bullseye

around an arrow. Yet, even if it does

not signify the end of the tournament,

at least it illustrates the rules of the

game and provides targets for which

to aim. By providing new examples

that describe experimental chemical

systems using formal languages, Due-

ñas-Dı́ez and Pérez-Mercader have un-

covered a new path that could bring

us closer to the elusive target of scal-

able molecular computation.

ACKNOWLEDGMENTS

This research was supported by funding

from the Defense Advanced Research

Projects Agency (DARPA W911NF-18-

2-0031). The views, opinions, and/or

findings expressed are those of the au-
thors and should not be interpreted as

representing the official views or pol-

icies of the Department of Defense or

the US government.

DECLARATION OF INTERESTS

This research relates to patent PCT/

US2019/038301: Methods of Chemical

Computation.

1. Organick, L., Ang, S.D., Chen, Y.-J., Lopez, R.,
Yekhanin, S., Makarychev, K., Racz, M.Z.,
Kamath, G., Gopalan, P., Nguyen, B., et al.
(2018). Random access in large-scale DNA
data storage. Nat. Biotechnol. 36, 242–248.

2. Kennedy, E., Arcadia, C.E., Geiser, J., Weber,
P.M., Rose, C., Rubenstein, B.M., and
Rosenstein, J.K. (2019). Encoding information
in synthetic metabolomes. PLoS One 14,
e0217364.

3. Cafferty, B.J., Ten, A.S., Fink, M.J., Morey, S.,
Preston, D.J., Mrksich, M., and Whitesides,
G.M. (2019). Storage of information using
small organic molecules. ACS Cent. Sci. 5,
911–916.

4. Rosenstein, J.K., Rose, C., Reda, S., Weber,
P.M., Kim, E., Sello, J., Geiser, J., Kennedy, E.,
Arcadia, C., Dombroski, A., et al. (2019).
Principles of Information Storage in Small-
Molecule Mixtures. arXiv, arXiv:1905.02187.
https://arxiv.org/abs/1905.02187.

5. Arcadia, C.E., Tann, H., Dombroski, A.,
Ferguson, K., Chen, S.L., Kim, E., Rose, C.,
Rubenstein, B.M., Reda, S., and Rosenstein,
J.K. (2018). Parallelized Linear
Classification with Volumetric
Chemical Perceptrons. Proceedings of
the IEEE Conference on Rebooting
Computing, 1–9.

6. Chen, H.-L., Doty, D., and Soloveichik, D.
(2014). Deterministic function computation
with chemical reaction networks. Nat.
Comput. 13, 517–534.

7. Seelig, G., Soloveichik, D., Zhang, D.Y., and
Winfree, E. (2006). Enzyme-free nucleic acid
logic circuits. Science 314, 1585–1588.

8. de Silva, A.P., and McClenaghan, N.D. (2004).
Molecular-scale logic gates. Chemistry 10,
574–586.

9. Dalchau, N., Szép, G., Hernansaiz-
Ballesteros, R., Barnes, C.P., Cardelli, L.,
Phillips, A., and Csikász-Nagy, A. (2018).
Computing with biological switches and
clocks. Nat. Comput. 17, 761–779.

10. Dueñas-Dı́ez, M., and Perez-Mercader, J.
(2019). How Chemistry Computes:
Language Recognition by Non-Biochemical
Chemical Automata. From Finite
Automata to Turing Machines. iScience 19,
514–526.
Chem 5, 3006–3019, December 12, 2019 3019

http://refhub.elsevier.com/S2451-9294(19)30517-0/sref1
http://refhub.elsevier.com/S2451-9294(19)30517-0/sref1
http://refhub.elsevier.com/S2451-9294(19)30517-0/sref1
http://refhub.elsevier.com/S2451-9294(19)30517-0/sref1
http://refhub.elsevier.com/S2451-9294(19)30517-0/sref1
http://refhub.elsevier.com/S2451-9294(19)30517-0/sref2
http://refhub.elsevier.com/S2451-9294(19)30517-0/sref2
http://refhub.elsevier.com/S2451-9294(19)30517-0/sref2
http://refhub.elsevier.com/S2451-9294(19)30517-0/sref2
http://refhub.elsevier.com/S2451-9294(19)30517-0/sref2
http://refhub.elsevier.com/S2451-9294(19)30517-0/sref3
http://refhub.elsevier.com/S2451-9294(19)30517-0/sref3
http://refhub.elsevier.com/S2451-9294(19)30517-0/sref3
http://refhub.elsevier.com/S2451-9294(19)30517-0/sref3
http://refhub.elsevier.com/S2451-9294(19)30517-0/sref3
https://arxiv.org/abs/1905.02187
http://refhub.elsevier.com/S2451-9294(19)30517-0/sref6
http://refhub.elsevier.com/S2451-9294(19)30517-0/sref6
http://refhub.elsevier.com/S2451-9294(19)30517-0/sref6
http://refhub.elsevier.com/S2451-9294(19)30517-0/sref6
http://refhub.elsevier.com/S2451-9294(19)30517-0/sref7
http://refhub.elsevier.com/S2451-9294(19)30517-0/sref7
http://refhub.elsevier.com/S2451-9294(19)30517-0/sref7
http://refhub.elsevier.com/S2451-9294(19)30517-0/sref8
http://refhub.elsevier.com/S2451-9294(19)30517-0/sref8
http://refhub.elsevier.com/S2451-9294(19)30517-0/sref8
http://refhub.elsevier.com/S2451-9294(19)30517-0/sref9
http://refhub.elsevier.com/S2451-9294(19)30517-0/sref9
http://refhub.elsevier.com/S2451-9294(19)30517-0/sref9
http://refhub.elsevier.com/S2451-9294(19)30517-0/sref9
http://refhub.elsevier.com/S2451-9294(19)30517-0/sref9
http://refhub.elsevier.com/S2451-9294(19)30517-0/sref10
http://refhub.elsevier.com/S2451-9294(19)30517-0/sref10
http://refhub.elsevier.com/S2451-9294(19)30517-0/sref10
http://refhub.elsevier.com/S2451-9294(19)30517-0/sref10
http://refhub.elsevier.com/S2451-9294(19)30517-0/sref10
http://refhub.elsevier.com/S2451-9294(19)30517-0/sref10

	A Language for Molecular Computation
	Acknowledgments
	Declaration of Interests


